摘要:
Devices and methods for forming a self-aligned airgap interconnect structure includes etching a conductive layer to a substrate to form conductive structures with patterned gaps and filling the gaps with a sacrificial material. The sacrificial material is planarized to expose a top surface of the conductive layer. A permeable cap layer is deposited over the conductive structure and the sacrificial material. Self-aligned airgaps are formed by removing the sacrificial material through the permeable layer.
摘要:
A method is disclosed that includes providing a semiconductor substrate having one or more device levels including a number of devices, and forming a number of wiring levels on a top surface of the one or more device levels, wherein one or more of the number of wiring levels includes one or more alpha particle blocking shields situated between at least one of the number of devices and a predetermined first location where a terminal pad will be formed in one of the wiring levels, the one or more alpha particle blocking shields placed at a second location, having one or more widths, and occupying a predetermined number of the wiring levels, sufficient to prevent a predetermined percentage of alpha particles of a selected energy or less expected to be emitted from an alpha particle emitting metallization to be formed adjacent and connected to the terminal pad from reaching the one device.
摘要:
The present invention provides a semiconductor structure including a semiconductor substrate having a plurality of source and drain diffusion regions located therein, each pair of source and drain diffusion regions are separated by a device channel. The structure further includes a first gate stack of pFET device located on top of some of the device channels, the first gate stack including a high-k gate dielectric, an insulating interlayer abutting the gate dielectric and a fully silicided metal gate electrode abutting the insulating interlayer, the insulating interlayer includes an insulating metal nitride that stabilizes threshold voltage and flatband voltage of the p-FET device to a targeted value and is one of aluminum oxynitride, boron nitride, boron oxynitride, gallium nitride, gallium oxynitride, indium nitride and indium oxynitride. A second gate stack of an nFET devices is located on top remaining device channels, the second gate stack including a high-k gate dielectric and a fully silicided gate electrode located directly atop the high-k gate dielectric.
摘要:
An alpha particle blocking structure and method of making the structure. The structure includes: a semiconductor substrate; a set of interlevel dielectric layers stacked from a lowermost interlevel dielectric layer closest to the substrate to a uppermost interlevel dielectric layer furthest from the substrate, each interlevel dielectric layer of the set of interlevel dielectric layers including electrically conductive wires, top surfaces of the wires substantially coplanar with top surfaces of corresponding interlevel dielectric layers; an electrically conductive tot final pad contacting a wire pad of the uppermost interlevel dielectric layer; an electrically conductive plating base layer contacting a top surface of the terminal pad; and a copper block on the plating base layer.
摘要:
Cobalt is added to a copper seed layer, a copper plating layer, or a copper capping layer in order to modify the microstructure of copper lines and vias. The cobalt can be in the form of a copper-cobalt alloy or as a very thin cobalt layer. The grain boundaries configured in bamboo microstructure in the inventive metal interconnect structure shut down copper grain boundary diffusion. The composition of the metal interconnect structure after grain growth contains from about 1 ppm to about 10% of cobalt in atomic concentration. Grain boundaries extend from a top surface of a copper-cobalt alloy line to a bottom surface of the copper-cobalt alloy line, and are separated from any other grain boundary by a distance greater than a width of the copper-cobalt alloy line.
摘要:
Cobalt is added to a copper seed layer, a copper plating layer, or a copper capping layer in order to modify the microstructure of copper lines and vias. The cobalt can be in the form of a copper-cobalt alloy or as a very thin cobalt layer. The grain boundaries configured in bamboo microstructure in the inventive metal interconnect structure shut down copper grain boundary diffusion. The composition of the metal interconnect structure after grain growth contains from about 1 ppm to about 10% of cobalt in atomic concentration. Grain boundaries extend from a top surface of a copper-cobalt alloy line to a bottom surface of the copper-cobalt alloy line, and are separated from any other grain boundary by a distance greater than a width of the copper-cobalt alloy line.
摘要:
A method for forming germano-silicide contacts atop a Ge-containing layer that is more resistant to etching than are conventional silicide contacts that are formed from a pure metal is provided. The method of the present invention includes first providing a structure which comprises a plurality of gate regions located atop a Ge-containing substrate having source/drain regions therein. After this step of the present invention, a Si-containing metal layer is formed atop the said Ge-containing substrate. In areas that are exposed, the Ge-containing substrate is in contact with the Si-containing metal layer. Annealing is then performed to form a germano-silicide compound in the regions in which the Si-containing metal layer and the Ge-containing substrate are in contact; and thereafter, any unreacted Si-containing metal layer is removed from the structure using a selective etch process. In some embodiments, an additional annealing step can follow the removal step. The method of the present invention provides a structure having a germano-silicide contact layer atop a Ge-containing substrate, wherein the germano-silicide contact layer contains more Si than the underlying Ge-containing substrate.
摘要:
A semiconductor device such as a complementary metal oxide semiconductor (CMOS) including at least one FET that includes a gate electrode including a metal carbide and method of fabrication are provided. The CMOS comprises dual work function metal gate electrodes whereby the dual work functions are provided by a metal and a carbide of a metal.
摘要:
Silicide is introduced into the gate region of a CMOS device through different process options for both conventional and replacement gate types processes. Placement of silicide in the gate itself, introduction of the silicide directly in contact with the gate dielectric, introduction of the silicide as a fill on top of a metal gate all ready in place, and introduction the silicide as a capping layer on polysilicon or on the existing metal gate, are presented. Silicide is used as an option to connect between PFET and NFET devices of a CMOS structure. The processes protect the metal gate while allowing for the source and drain silicide to be of a different silicide than the gate silicide. A semiconducting substrate is provided having a gate with a source and a drain region. A gate dielectric layer is deposited on the substrate, along with a metal gate layer. The metal gate layer is then capped with a silicide formed on top of the gate, and conventional formation of the device then proceeds. A second silicide may be employed within the gate. A replacement gate is made from two different metals (dual metal gate replacement) prior to capping with a silicide.
摘要:
A method for providing a low resistance non-agglomerated Ni monosilicide contact that is useful in semiconductor devices. Where the inventive method of fabricating a substantially non-agglomerated Ni alloy monosilicide comprises the steps of: forming a metal alloy layer over a portion of a Si-containing substrate, wherein said metal alloy layer comprises of Ni and one or multiple alloying additive(s), where said alloying additive is Ti, V, Ge, Cr, Zr, Nb, Mo, Hf, Ta, W, Re, Rh, Pd or Pt or mixtures thereof; annealing the metal alloy layer at a temperature to convert a portion of said metal alloy layer into a Ni alloy monosilicide layer; and removing remaining metal alloy layer not converted into Ni alloy monosilicide. The alloying additives are selected for phase stability and to retard agglomeration. The alloying additives most efficient in retarding agglomeration are most efficient in producing silicides with low sheet resistance.