Abstract:
The present disclosure provides a process for preparing a hydrocarbon fuel from waste rubber. The process involves admixing, in a reaction vessel, at least one fluid medium with the waste rubber to obtain a slurry; wherein the concentration of the waste rubber in the slurry ranges from 45% to 70%. A reactor is charged with the slurry and a predetermined amount of at least one catalyst composition to obtain a mixture, followed by introduction of hydrogen to the reactor to attain a predetermined pressure and heating the mixture at a predetermined temperature, to attain an autogenously generated pressure, and for a predetermined time period to obtain a reaction mass comprising the hydrocarbon fuel. This reaction mass comprising the hydrocarbon fuel is then cooled to obtain a cooled reaction mass. The hydrocarbon fuel is then separated from the cooled reaction mass.
Abstract:
The present disclosure relates to a process for the conversion of biomass to crude bio-oil. Phycocyanin is extracted from the biomass to form phycocyanin extracted biomass (PEB) and subjecting the PEB to HTL conversion to obtain crude bio-oil. PEB results in improved yield of crude bio-oil as compared to the crude bio-oil yield from biomass without first extracting the phycocyanin from the biomass.
Abstract:
The present disclosure relates to a compact polymer gel consisting of disentangled ultrahigh molecular weight polyethylene (dis-UHMWPE), at least one nucleator, at least one filler and at least one fluid medium. The present disclosure also provides a process for the preparation of the compact polymeric gel and fibers from the compact polymeric gel of both low and high denier values. The fibers prepared in accordance with the present process have tensile strength ranging from 2.5 to 13 GPa, tensile modulus ranging from 100 to 270 GPa.
Abstract:
The present disclosure relates to a transition metal based pro-catalyst represented by Formula I: wherein, the substituents have the meaning as defined in the specification. The present disclosure also relates to a process for preparing the transition metal based pro-catalyst represented by Formula I and the catalyst composition obtained therefrom. Further, the present disclosure relates to a process for polymerizing olefins by employing the catalyst composition comprising the transition metal based pro-catalyst represented by Formula I.
Abstract:
The present disclosure relates to a process for the production of bio-oil which involves heating a mixture of a biomass slurry and a first catalyst composition at a temperature ranging from 200 to 350° C. and at a pressure ranging from 70 to 250 bars to obtain a mass containing crude bio oil, a residue and the catalyst; separating the crude bio oil from said mass to obtain a separated crude bio oil; extracting said separated crude bio oil with at least one solvent and evaporating said solvent to obtain a solvent free crude bio oil; subjecting said solvent free crude bio oil to reduction in the presence of a second catalyst composition and hydrogen source at temperature and pressure conditions similar to those employed for the conversion of bio mass into crude bio oil to obtain bio-oil. The second catalyst composition is the same as that of the first catalyst composition. The process also comprises a method step of recovering the first catalyst and reusing it either for preparing crude bio oil or bio oil or both.
Abstract:
The present disclosure relates to an adsorbent composition for reducing impurities of heat transfer fluids and a process for the preparation of the same. The adsorbent composition comprises a layered double hydroxide in an amount in the range of 15 to 70 wt % of the total mass of the composition; alumina in an amount in the range of 30 to 85 wt % of the total mass of the composition; and optionally activated bauxite in an amount in the range of 15 to 50 wt % of the total mass of the composition. The present disclosure provides economical and eco-friendly adsorbent composition having feed processing capacity in the range of 58 to 600 gm/gm.
Abstract:
The present disclosure relates to a process for the preparation of CPVC which includes reacting PVC with chlorine at a pre-determined temperature in the presence of at least one irradiation source having wavelength ranging from 254 and 530 nm while maintaining the radiant flux from 1.5 to 2 W/kg of PVC, irradiance at 0.13 W/cm2 and the number of photons emitted per second from 3×1018 to 5×1018, under agitation, for a time period ranging from 3 to 4 hours to obtain CPVC. The CPVC prepared from the afore-stated process has a whiteness index ranging from 89 to 96, a yellowness index ranging from 1.23 to 1.73 and stability ranging from 648 to 684 seconds. The rate of the chlorination reaction after employing the afore-stated process parameters ranges from 1.6 to 4.36 mole/hour/kg.
Abstract:
The present disclosure provides a multi-metallic catalyst system comprising at least one support, and at least one promoter component and an active component comprising at least two metals uniformly dispersed on the support. The present disclosure also provides a process for preparing the multi-metallic catalyst system. Further, the present disclosure provides a process for preparing upgraded fuel from biomass. The process is carried out in two steps. In the first step, a biomass slurry is prepared and is heated in the presence of hydrogen and a multi-metallic catalyst that comprises at least one support, at least one promoter component, and an active component comprising at least two metals to obtain crude biofuel as an intermediate product. The intermediate product obtained in the first step is then cooled and filtered to obtain a filtered intermediate product. In the second step, the filtered intermediate product is hydrogenated in the presence of the multi-metallic catalyst to obtain the upgraded fuel. The fuel obtained from the process of the present disclosure is devoid of heteroatoms such as oxygen, nitrogen and sulfur.
Abstract:
The present disclosure relates to a process for chlorination of a polymer. The process of the present disclosure includes minimum use of light and maximum chlorine utilization for getting maximum chlorination yield. The chlorinated polymer obtained by the process of the present disclosure exhibit improved properties viz. thermal stability, color, inherent viscosity and mechanical properties.
Abstract:
The present disclosure provides a multi-metallic catalyst system comprising at least one support, and at least one promoter component and an active component comprising at least two metals uniformly dispersed on the support. The present disclosure also provides a process for preparing the multi-metallic catalyst system. Further, the present disclosure provides a process for preparing upgraded fuel from biomass. The process is carried out in two steps. In the first step, a biomass slurry is prepared and is heated in the presence of hydrogen and a multi-metallic catalyst that comprises at least one support, at least one promoter component, and an active component comprising at least two metals to obtain crude biofuel as an intermediate product. The intermediate product obtained in the first step is then cooled and filtered to obtain a filtered intermediate product. In the second step, the filtered intermediate product is hydrogenated in the presence of the multi-metallic catalyst to obtain the upgraded fuel. The fuel obtained from the process of the present disclosure is devoid of heteroatoms such as oxygen, nitrogen and sulfur.