Copper interconnect structure and method of formation
    1.
    发明授权
    Copper interconnect structure and method of formation 失效
    铜互连结构和形成方法

    公开(公告)号:US06174810B1

    公开(公告)日:2001-01-16

    申请号:US09055510

    申请日:1998-04-06

    IPC分类号: H01L2144

    摘要: In one embodiment, a copper interconnect structure is formed by depositing a dielectric layer (28) on a semiconductor substrate (10). The dielectric layer (28) is then patterned to form interconnect openings (29). A layer of copper (34) is then formed within the interconnect openings (29). A portion of the copper layer (34) is then removed to form copper interconnects (39) within the interconnect openings (29). A copper barrier layer (40) is then formed overlying the copper interconnects (39). Adhesion between the copper barrier layer (40) and the copper interconnects (39) is improved by exposing the exposed surface of the copper interconnects (39) to a plasma generated using only ammonia as a source gas.

    摘要翻译: 在一个实施例中,通过在半导体衬底(10)上沉积介电层(28)来形成铜互连结构。 然后将电介质层(28)图案化以形成互连开口(29)。 然后在互连开口(29)内形成一层铜(34)。 然后去除铜层(34)的一部分以在互连开口(29)内形成铜互连(39)。 然后在铜互连(39)上形成铜阻挡层(40)。 通过将铜互连(39)的暴露表面暴露于仅使用氨作为源气体产生的等离子体,可以改善铜阻挡层(40)和铜互连(39)之间的粘合性。

    Atomic layer deposition of tungsten materials
    2.
    发明授权
    Atomic layer deposition of tungsten materials 有权
    原子层沉积钨材料

    公开(公告)号:US08211799B2

    公开(公告)日:2012-07-03

    申请号:US13160378

    申请日:2011-06-14

    IPC分类号: H01L21/44

    摘要: Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.

    摘要翻译: 本发明的实施方案提供了一种沉积含钨材料的方法。 在一个实施例中,一种方法包括在设置在衬底上的底层上形成钨成核层,同时在原子层沉积(ALD)工艺期间依次提供钨前体和还原气体到处理室中,并在其上沉积钨体积层 钨成核层,其中所述还原气体包含氢气和氢化物化合物(例如乙硼烷),并且具有约500:1或更高的氢/氢化物流速比。 在一些实例中,该方法包括以约1slm至约20slm的流速将氢气流入处理室,并将氢化物化合物和载气的混合物以流速流动到处理室中 在约50sccm至约500sccm的范围内。

    Deposition and densification process for titanium nitride barrier layers
    6.
    发明授权
    Deposition and densification process for titanium nitride barrier layers 失效
    氮化钛阻挡层的沉积和致密化过程

    公开(公告)号:US07521379B2

    公开(公告)日:2009-04-21

    申请号:US11869557

    申请日:2007-10-09

    IPC分类号: H01L21/44 H01L21/469

    摘要: In one embodiment, a method for forming a titanium nitride barrier material on a substrate is provided which includes depositing a titanium nitride layer on the substrate by a metal-organic chemical vapor deposition (MOCVD) process, and thereafter, densifying the titanium nitride layer by exposing the substrate to a plasma process. In one example, the MOCVD process and the densifying plasma process is repeated to form a barrier stack by depositing a second titanium nitride layer on the first titanium nitride layer. In another example, a third titanium nitride layer is deposited on the second titanium nitride layer. Subsequently, the method provides depositing a conductive material on the substrate and exposing the substrate to a annealing process. In one example, each titanium nitride layer may have a thickness of about 15 Å and the titanium nitride barrier stack may have a copper diffusion potential of less than about 5×1010 atoms/cm2.

    摘要翻译: 在一个实施例中,提供了一种在衬底上形成氮化钛阻挡材料的方法,其包括通过金属 - 有机化学气相沉积(MOCVD)工艺在衬底上沉积氮化钛层,然后通过以下步骤致密化氮化钛层: 将衬底暴露于等离子体工艺。 在一个实例中,通过在第一氮化钛层上沉积第二氮化钛层来重复MOCVD工艺和致密等离子体工艺以形成势垒堆叠。 在另一示例中,在第二氮化钛层上沉积第三氮化钛层。 随后,该方法提供在衬底上沉积导电材料并将衬底暴露于退火过程。 在一个示例中,每个氮化钛层可以具有约15埃的厚度,并且氮化钛阻挡层可以具有小于约5×10 10原子/ cm 2的铜扩散电位。

    Semiconductor device having a ternary boron nitride film and a method
for forming the same
    7.
    发明授权
    Semiconductor device having a ternary boron nitride film and a method for forming the same 失效
    具有三元氮化硼膜的半导体器件及其形成方法

    公开(公告)号:US5324690A

    公开(公告)日:1994-06-28

    申请号:US11919

    申请日:1993-02-01

    摘要: A non-silyated, ternary boron nitride film (18, 38) is provided for semiconductor device applications. The non-silyated, ternary boron nitride film is preferably formed by plasma-enhanced chemical vapor deposition using non-silyated compounds of boron, nitrogen, and either oxygen, germanium, germanium oxide, fluorine, or carbon. In one embodiment, boron oxynitride (BNO) is deposited in a plasma-enhanced chemical vapor deposition reactor using ammonia (NH.sub.3), diborane (B.sub.2 H.sub.6), and nitrous oxide (N.sub.2 O). The BNO film has a dielectric constant of about 3.3 and exhibits a negligible removal rate in a commercial polishing apparatus. Because of its low dielectric constant and high hardness, the ternary boron nitride film formed in accordance with the invention can be advantageously used as a polish-stop layer and as a interlevel dielectric layer in a semiconductor device.

    摘要翻译: 为半导体器件应用提供了不含硅酸盐的三元氮化硼膜(18,38)。 非硅化三元氮化硼膜优选通过使用硼,氮和氧,锗,氧化锗,氟或碳的非硅化化合物的等离子体增强化学气相沉积来形成。 在一个实施方案中,使用氨(NH 3),乙硼烷(B 2 H 6)和一氧化二氮(N 2 O)在等离子体增强化学气相沉积反应器中沉积氮氧化硼(BNO)。 BNO膜的介电常数约为3.3,在商业抛光装置中的去除率可忽略不计。 由于其低介电常数和高硬度,根据本发明形成的三元氮化硼膜可以有利地用作半导体器件中的抛光停止层和层间电介质层。

    ATOMIC LAYER DEPOSITION OF TUNGSTEN MATERIALS
    8.
    发明申请
    ATOMIC LAYER DEPOSITION OF TUNGSTEN MATERIALS 有权
    原子层沉积材料

    公开(公告)号:US20120244699A1

    公开(公告)日:2012-09-27

    申请号:US13491191

    申请日:2012-06-07

    IPC分类号: H01L21/285

    摘要: Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.

    摘要翻译: 本发明的实施方案提供了一种沉积含钨材料的方法。 在一个实施例中,一种方法包括在设置在衬底上的底层上形成钨成核层,同时在原子层沉积(ALD)工艺期间依次提供钨前体和还原气体到处理室中,并在其上沉积钨体积层 钨成核层,其中所述还原气体包含氢气和氢化物化合物(例如乙硼烷),并且具有约500:1或更高的氢/氢化物流速比。 在一些实例中,该方法包括以约1slm至约20slm的流速将氢气流入处理室,并将氢化物化合物和载气的混合物以流速流动到处理室中 在约50sccm至约500sccm的范围内。

    Deposition and densification process for titanium nitride barrier layers
    9.
    发明授权
    Deposition and densification process for titanium nitride barrier layers 失效
    氮化钛阻挡层的沉积和致密化过程

    公开(公告)号:US07838441B2

    公开(公告)日:2010-11-23

    申请号:US12426815

    申请日:2009-04-20

    IPC分类号: H01L21/768

    摘要: In one embodiment, a method for forming a titanium nitride barrier material on a substrate is provided which includes depositing a titanium nitride layer on the substrate by a metal-organic chemical vapor deposition (MOCVD) process, and thereafter, densifying the titanium nitride layer by exposing the substrate to a plasma process. In one example, the MOCVD process and the densifying plasma process is repeated to form a barrier stack by depositing a second titanium nitride layer on the first titanium nitride layer. In another example, a third titanium nitride layer is deposited on the second titanium nitride layer. Subsequently, the method provides depositing a conductive material on the substrate and exposing the substrate to a annealing process. In one example, each titanium nitride layer may have a thickness of about 15 Å and the titanium nitride barrier stack may have a copper diffusion potential of less than about 5×1010 atoms/cm2.

    摘要翻译: 在一个实施例中,提供了一种在衬底上形成氮化钛阻挡材料的方法,其包括通过金属 - 有机化学气相沉积(MOCVD)工艺在衬底上沉积氮化钛层,然后通过以下步骤致密化氮化钛层: 将衬底暴露于等离子体工艺。 在一个实例中,通过在第一氮化钛层上沉积第二氮化钛层来重复MOCVD工艺和致密等离子体工艺以形成势垒堆叠。 在另一示例中,在第二氮化钛层上沉积第三氮化钛层。 随后,该方法提供在衬底上沉积导电材料并将衬底暴露于退火过程。 在一个示例中,每个氮化钛层可以具有约15埃的厚度,氮化钛阻挡层可以具有小于约5×10 10原子/ cm 2的铜扩散电位。

    Process for forming copper interconnect structure
    10.
    发明授权
    Process for forming copper interconnect structure 失效
    形成铜互连结构的工艺

    公开(公告)号:US5391517A

    公开(公告)日:1995-02-21

    申请号:US120097

    申请日:1993-09-13

    摘要: A copper metallization structure and process for the formation of electrical interconnections fabricated with pure copper metal is provided. The metallization structure includes an interface layer (22) intermediate to a dielectric layer (12), and a copper interconnect (30). The interface layer (22) functions to adhere the copper interconnect (30) to a device substrate (10) and to prevent the diffusion of copper into underlying dielectric layers. The interconnect layer (22) is fabricated by depositing a first titanium layer (16) followed by the sequential deposition of a titanium nitride layer (18), and a second titanium layer (20). A copper layer (24) is deposited to overlie the second titanium layer (20) and an annealing step is carried out to form a copper-titanium intermetallic layer (26). The titanium nitride layer (18) functions as a diffusion barrier preventing the diffusion of copper into the underlying dielectric layer (12), and the copper titanium intermetallic layer (26) provides an adhesive material, which adheres the copper layer (24) to the device substrate ( 10). Following the formation of the intermetallic layer (26), the device surface is planarized to form a planar surface (28), and to form an inlaid copper interconnect (30).

    摘要翻译: 提供了一种用于形成用纯铜金属制造的电互连的铜金属化结构和工艺。 金属化结构包括介于介电层(12)中间的界面层(22)和铜互连(30)。 界面层(22)用于将铜互连(30)粘附到器件衬底(10)并防止铜扩散到下面的介电层中。 通过沉积第一钛层(16)然后顺序沉积氮化钛层(18)和第二钛层(20)来制造互连层(22)。 沉积铜层(24)以覆盖第二钛层(20),并执行退火步骤以形成铜 - 钛金属间层(26)。 氮化钛层(18)作为阻止铜扩散到下面的电介质层(12)中的扩散阻挡层而起作用,铜钛金属间化合物层(26)提供将铜层(24)粘合到 器件衬底(10)。 在形成金属间层(26)之后,将器件表面平坦化以形成平坦表面(28),并形成镶嵌铜互连(30)。