摘要:
A batch of wafer substrates is provided with each wafer substrate having a surface. Each surface is coated with a layer of material applied simultaneously to the surface of each of the batch of wafer substrates. The layer of material is applied to a thickness that varies less than four thickness percent across the surface and exclusive of an edge boundary and having a wafer-to-wafer thickness variation of less than three percent. The layer of material so applied is a silicon oxide, silicon nitride or silicon oxynitride with the layer of material being devoid of carbon and chlorine. Formation of silicon oxide or a silicon oxynitride requires the inclusion of a co-reactant. Silicon nitride is also formed with the inclusion of a nitrification co-reactant. A process for forming such a batch of wafer substrates involves feeding the precursor into a reactor containing a batch of wafer substrates and reacting the precursor at a wafer substrate temperature, total pressure, and precursor flow rate sufficient to create such a layer of material. The delivery of a precursor and co-reactant as needed through vertical tube injectors having multiple orifices with at least one orifice in registry with each of the batch of wafer substrates and exit slits within the reactor to create flow across the surface of each of the wafer substrates in the batch provides the within-wafer and wafer-to-wafer uniformity.
摘要:
A process for forming an oxide-containing film from silicon is provided that includes heating the silicon substrates to a process temperature of between 250° C. and 1100° C. with admission into the process chamber of diatomic reductant source gas Z-Z′ where Z and Z′ are each H, D and T and a stable source of oxide ion. Multiple exhaust ports exist along the vertical extent of the process chamber to create reactant across flow. A batch of silicon substrates is provided having multiple silicon base layers, each of the silicon base layers having exposed and planes and a film residual stress associated with the film being formed at a temperature of less than 600° C. and having a film thickness that exceeds a film thickness on the crystallographic plane by less than 20%, or a film characterized by thickness anisotropy less than 18% and an electrical breakdown field of greater than 10.5 MV/cm.
摘要:
A semiconductor device isolating structure and method for forming such a structure. In one embodiment, an opening is formed through a mask layer overlying a semiconductor substrate. A trench of a desired depth is then etched into the semiconductor substrate at the area of the semiconductor substrate underlying the opening in the mask layer. The trench is then filled with a dielectric material. After an oxide planarizing process, the present invention exposes the dielectric-filled trench to an oxidizing environment. By filling the trench with dielectric material prior to the oxidization step, the present invention selectively oxidizes the semiconductor substrate at corners formed by the intersection of the sidewalls of the trench and the top surface of the semiconductor substrate. In so doing, the present invention forms smoothly rounded semiconductor substrate corners under the mask layer. Thus, the present invention eliminates the sharp upper corners associated with prior art shallow trench isolation methods.
摘要:
The present invention relates to photovoltaic devices such as silicon solar cells. Devices shown exhibit improved low light performance and increased breakdown strength. Reasons for such improvements includes emitter concentration profiles leading to significantly reduced leakage currents.
摘要:
Disclosed are techniques to provide an integrated circuit, including the provision of improved integrated circuit isolation structures. The techniques include forming a number of trenches in an integrated circuit substrate to define a number of substrate regions that are to be electrically isolated from one another. A dielectric material is deposited in the trenches by exposure to a high density plasma having a first deposition-to-etch ratio. The high density plasma is adjusted to a second deposition-to-etch ratio greater than the first ratio to accumulate the dielectric material on the substrate after at least partially filling the trenches. A portion of the dielectric material is removed to planarize the workpiece. A number of components, such as insulated gate field effect transistors, may be subsequently formed in the substrate regions between the trenches.
摘要:
The present invention relates to devices and method for textured semiconductor materials. Devices and methods shown provide a textured surface with properties that provide a high breakdown voltage. The devices and methods of the present invention can be used to make semiconductor substrates for use in photovoltaic applications such as solar cells.
摘要:
A method is presented for forming a transistor gate structure. A gate oxide layer is formed. Gate material is deposited on the gate oxide layer. A layer of silicon oxynitride is deposited on the gate material. The layer of silicon oxynitride, the gate material and the gate oxide layer are etched to form a gate structure. A silicon oxynitride region remains on top of the gate structure. A wet chemical process is performed to remove the silicon oxynitride region from the top of the gate structure. After performing the wet chemical process, spacers are formed around the gate structure.
摘要:
An isolation structure on an integrated circuit is formed using a shallow trench isolation process. A layer of buffer oxide is formed on a substrate. A layer of nitride is formed on the layer of buffer oxide. The layer of nitride and the layer of buffer oxide are patterned to form a trench area. An oxidation of the substrate is performed to provide for round corners at a perimeter of the trench area. The substrate is then etched to form a trench within the trench area.
摘要:
A semiconductor device isolating structure and method for forming such a structure. In one embodiment, the semiconductor device isolating structure of the present invention includes a trench formed into a semiconductor substrate. A cross-section of the trench has a first sidewall extending to the bottom surface of the trench, and a second sidewall extending to the bottom surface of the trench. Furthermore, the trench of the present invention also has a first field oxide region formed proximate to the interface of the first sidewall and the top surface of the semiconductor substrate, and a second field oxide region formed proximate to the interface of the second sidewall and the top surface of the semiconductor substrate. As a result, the semiconductor substrate has a first rounded corner formed at the intersection of the top surface of semiconductor substrate and the first sidewall, and a second rounded corner formed at the intersection of the top surface of the semiconductor substrate and the second sidewall. In so doing, the present invention eliminates the sharp upper corners found in conventional trenches formed using prior art shallow trench isolation methods.