Abstract:
Embodiments of the invention provide a heat-dissipating substrate and a fabricating method of the heat-dissipating substrate. According to various embodiments, the heat-dissipating substrate includes a plating layer divided by a first insulator formed in a division area. A metal plate is formed on an upper surface of the plating layer and filled with a second insulator at a position corresponding to the division area, with an anodized layer formed on a surface of the metal plate. A circuit layer is formed on the anodized layer which is formed on an upper surface of the metal plate. The heat-dissipating substrate and fabricating method thereof achieves thermal isolation by a first insulator formed in a division area and a second insulator.
Abstract:
Disclosed herein is a method of manufacturing a package substrate for optical elements. The method includes the steps of providing a conductive substrate, forming a cavity space in the conductive substrate, and forming an insulation layer on the conductive substrate. The method further includes the steps of forming a circuit layer and electrode pads on the conductive substrate using a plating process, forming a cavity space including a lower part and a side wall in the circuit layer, and mounting an optical element in the cavity space and then applying a fluorescent resin layer thereon.
Abstract:
Disclosed herein is a package substrate for optical elements, including: a conductive substrate including an insulation layer formed thereon; a circuit layer which is formed on the conductive substrate 11 and has a cavity space therein; electrode pads which are formed on the conductive substrate and which are spaced apart from the circuit layer by predetermined intervals such that trenches are formed between the circuit layer and the electrode pads; an optical element which is mounted in the cavity space of the circuit layer and which is electrically connected with the electrode pads; and a fluorescent resin layer which is formed on the circuit layer and the optical element to allow the optical element to uniformly emit light. The package substrate is advantageous in that uniform white light can be realized.
Abstract:
A sensing device includes a fixed member, a rotation member disposed at both ends of the fixed member, a camera installed on the fixed member, and respective radar units installed on the rotation members, where the respective radar units are configured to sense respective objects at edges of a viewing angle of the camera and respective objects outside of the viewing angle of the camera.
Abstract:
An antenna apparatus includes a substrate, a transmission antenna disposed on the substrate, and an auxiliary substrate disposed in an upper portion of the transmission antenna and having a radio wave guide unit having a horn shape. The auxiliary substrate further includes an insulator and a second metal pattern disposed in the radio wave guide unit on the insulator.
Abstract:
A sensor package may allow a fluid to flow smoothly to thus increase response characteristics. The sensor package may include: a terminal part; at least one electronic element electrically connected to the terminal part through a bonding wire; and a molded part encapsulating the bonding wire and the electronic element and including a sensing portion partially exposing the electronic element and at least one guide portion guiding an ambient fluid to the sensing portion.
Abstract:
Embodiments of the invention provide a method of manufacturing a printed circuit board. The method includes the steps of mounting a strip substrate on a fixing member, and separating the strip substrate into unit substrates by performing a singulation process. The method further includes the steps of attaching solder balls onto the unit substrates using a mask disposed on the unit substrates, and fixing the solder balls on the unit substrates by performing a reflow process.
Abstract:
Disclosed herein is a method of manufacturing a package substrate for optical elements. The method includes the steps of providing a conductive substrate including an insulation layer formed thereon, and forming a circuit layer and electrode pads on the conductive substrate using a plating process. The method further includes selectively plating the circuit layer, in which the optical element is to be mounted, with a conductor to such a thickness that the optical element is buried, forming a cavity space including a lower part and a side wall in the circuit layer, and mounting an optical element in the cavity space and then applying a fluorescent resin layer thereon.
Abstract:
Disclosed herein are a hybrid heat-radiating substrate including a metal core layer; an oxide insulating core layer that is formed in a thickness direction of the metal core layer to have a shape where the oxide insulating core layer is integrally formed with the metal core layer, an oxide insulating layer that is formed on one surface or both surfaces of the metal core layer, and a circuit layer that is configured to include first circuit patterns formed on the oxide insulating core layer and second circuit patterns formed on the oxide insulating layer, and a method of manufacturing the same.