Abstract:
There is provided a power semiconductor module in which power semiconductor elements, integration of which may be difficult due to heating, are modularized. The power semiconductor module includes: a heat dissipation substrate electrically connected to a common connection terminal; and a plurality of electronic elements disposed on the heat dissipation substrate, wherein the electronic elements have varying spaces therebetween.
Abstract:
There is provided a semiconductor module capable of being easily manufactured and a manufacturing method thereof, the semiconductor module including a module substrate on which at least one electronic element is mounted, at least one external connection terminal fastened to the module substrate, and a case formed by coupling a first case and a second case, wherein the first case and the second case accommodate the module substrate at both ends of the module substrate and are coupled to each other.
Abstract:
There is provided a power semiconductor device, including a first conductive type drift layer; a second conductive type body layer formed on the drift layer, a second conductive type collector layer formed below the drift layer; a first gate formed by penetrating through the body layer and a portion of the drift layer, a first conductive type emitter layer formed in the body layer and formed to be spaced apart from the first gate, a second gate covering upper portions of the body layer and the emitter layer and formed as a flat type gate on the first gate, and a segregation stop layer formed between contact surfaces of the first and second gates with the body layer, the emitter layer, and the drift layer.
Abstract:
There are provided a power semiconductor module and a manufacturing method thereof, the power semiconductor module including: a lead frame; a base substrate including a circuit wiring formed on an insulating layer thereof; a plurality of power semiconductor devices disposed to contact the circuit wiring; and a multilayer substrate formed by stacking a plurality of substrates and electrically connecting the power semiconductor devices and the lead frame to one another using a connection line formed therein and having conductivity.
Abstract:
There is provided a power module package. The power module package includes: a base substrate provided with a pattern; a heat spreader formed by being stacked on an upper surface of the base substrate; and at least one first semiconductor device mounted on an upper surface of the heat spreader, wherein an outer circumferential surface of the heat spreader is provided with a coil.
Abstract:
Disclosed herein are a power module package and a method of manufacturing the same. According to a preferred embodiment of the present invention, the power module package includes: a lead frame on which a power device and a control IC electrically connected to the power device and controlling the power device are mounted; and a thermal sheet bonded to one surface of the lead frame, wherein the thermal sheet includes first and second resin layers which include a thermal conductive inorganic filler and are added with a mixture of phenyl glycidyl ether (PGE) and alkyl glycidyl ether (Alkyl (C12 to C14) glycidyl ether), and a thermal spreader of a metal material disposed at a bonded interface which is formed between the first and second resin layers. Therefore, it is possible to easily improve a thermal property of the power module package by a thermal spreading effect due to the thermal spreader.
Abstract:
There are provided a power factor correction device and a method for controlling power factor correction using the same. The power factor correction device includes a power factor correction circuit and a control circuit. The power factor correction circuit includes first and second inductors connected to an input power source stage and first and second main switches performing a switching operation on the first and second inductors, respectively. The control circuit may provide control signals to the first and second main switches, respectively, and when phase currents flowing in the respective first and second inductors are unbalanced, the control circuit may change a phase of at least one of the first and second main switches to correct an imbalance of the phases.
Abstract:
Disclosed herein is an all-in-one power semiconductor module including a plurality of first semiconductor devices formed on a substrate; a housing molded and formed to include bridges formed across upper portions of the plurality of first semiconductor devices; and a plurality of lead members integrally formed with the housing and electrically connecting the plurality of first semiconductor devices and the substrate.According to the present invention, reliability can be improved by increasing bonding areas and bonding strength of semiconductor devices as well as processibilty can be enhanced and failure is reduced by adjusting a step difference with respect to an arrangement and height of the semiconductor devices. Further, a processing time resulting from an omission of a wire bonding process is reduced.
Abstract:
A heat radiation sheet for a board including: composite fillers including metal particles and ceramic particles disposed on surfaces of the metal particles; and a base resin, and a manufacturing method of a heat radiation sheet for a board may include: preparing metal particles and ceramic particles; disposing the ceramic particles on surfaces of the metal particles by mixing the metal particles and the ceramic particles with each other; forming oxidized layers on exposed surfaces of the metal particles; and forming a prepreg by mixing composite fillers including the metal particles and the ceramic particles and a base resin with each other.
Abstract:
There is provided a semiconductor module package including: a base substrate formed by mounting one or more first semiconductor devices thereon; a lead frame formed on a top surface of the first semiconductor device and having an inlet formed to inject a solder paste; and spaces inserted between the first semiconductor device and the lead frame to form a separation space, wherein the solder paste is filled in the separation space.