摘要:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
摘要:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
摘要:
A probe card for testing semiconductor wafers, and a method and system for testing wafers using the probe card are provided. The probe card is configured for use with a conventional testing apparatus, such as a wafer probe handler, in electrical communication with test circuitry. The probe card includes an interconnect substrate having contact members for establishing electrical communication with contact locations on the wafer. The probe card also includes a membrane for physically and electrically connecting the interconnect substrate to the testing apparatus, and a compressible member for cushioning the pressure exerted on the interconnect substrate by the testing apparatus. The interconnect substrate can be formed of silicon with raised contact members having penetrating projections. Alternately the contact members can be formed as indentations for testing bumped wafers. The membrane can be similar to multi layered TAB tape including metal foil conductors attached to a flexible, electrically-insulating, elastomeric tape. The probe card can be configured to contact all of the dice on the wafer at the same time, so that test signals can be electronically applied to selected dice as required.
摘要:
A temporary package for a semiconductor die is provided. The temporary package has an outline and external contact configuration that are the same as a conventional plastic or ceramic semiconductor package. The temporary package can be used for burn-in testing of the die using standard equipment. The die can then be removed from the package and certified as a known good die. The package includes a base, an interconnect and a force applying mechanism. The package base includes external contacts formed in a dense array, such as a land grid array (LGA), a pin grid array (PGA), a bumped grid array (BGA) or a perimeter array. The package base can be formed of ceramic or plastic with internal conductive lines using a ceramic lamination process, a 3-D molding process or a Cerdip formation process.
摘要:
A semiconductor carrier and system for testing bumped semiconductor components, such as dice and packages, having contact bumps are provided. The carrier includes a base, an interconnect, and a force applying mechanism. The interconnect includes patterns of contact members adapted to electrically contact the contact bumps. The interconnect can include a substrate having contact members formed as recesses, or as projections, covered with conductive layers. Alternately, the interconnect can be a multi layered tape bonded directly to a base of the carrier. In addition to providing electrical connections, the contact members perform an alignment function by self centering the contact bumps within the contact members. The carrier can also include an alignment member configured to align the components with the interconnect. The system can include the carrier, a socket, and a testing apparatus such as a burn-in board in electrical communication with test circuitry.
摘要:
A method and carrier for testing semiconductor dice such as bare dice or chip scale packages are provided. The carrier includes a base for retaining a single die, an interconnect for establishing temporary electrical communication with the die, and a force applying mechanism for biasing the die and interconnect together. In an illustrative embodiment the base includes conductors arranged in a universal pattern adapted to electrically connect to different sized interconnects. Interconnects are thus interchangeable on a base for testing different types of dice using the same base. The conductors on the base can be formed on a planar active surface of the base or on a stepped active surface having different sized cavities for mounting different sized interconnects. In an alternate embodiment the carrier includes an interposer. In a first interposer embodiment, the interposer connects directly to external test circuitry and can be changed to accommodate different sized interconnects. In a second interposer embodiment, the interposer connects to conductors on the base and adapts the base for use with different sized interconnects.
摘要:
A method, apparatus and system for testing semiconductor wafers are provided. The method includes providing a wafer carrier to provide an electrical path for receiving and transmitting test signals to the wafer. The wafer carrier includes a base for retaining the wafer, and an interconnect having contact members configured to establish electrical communication with contact locations on the wafer. The wafer carrier can include one or more compressible spring members configured to bias the wafer and interconnect together in the assembled carrier. The wafer carrier can be assembled, with the wafer in alignment with the interconnect, using optical alignment techniques, and an assembly tool similar to aligner bonder tools used for flip chip bonding semiconductor dice. A system for use with the carrier can include a testing apparatus configured to apply test signals through the carrier to the wafer while the wafer is subjected to temperature cycling.
摘要:
An interconnect and system for establishing temporary electrical communication with semiconductor components having contact bumps are provided. The interconnect includes a substrate with patterns of contact members adapted to electrically contact the contact bumps. The substrate can be formed of a material such as ceramic, silicon, FR-4, or photo-chemically machineable glass. The contact members can be formed as recesses covered with conductive layers in electrical communication with conductors and terminal contacts on the substrate. Alternately, the contact members can be formed as projections adapted to penetrate the contact bumps, as microbumps with a rough textured surface, or as a deposited layer formed with recesses. The interconnect can be employed in a wafer level test system for testing dice contained on a wafer, or in a die level test system for testing bare bumped dice or bumped chip scale packages.
摘要:
A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
摘要:
A support structure for use with a semiconductor substrate in thinning, or backgrinding, thereof, as well as during post-thinning processing of the semiconductor substrate includes a portion which extends substantially along and around an outer periphery of the semiconductor substrate to impart the thinned semiconductor substrate with rigidity. The support structure may be configured as a ring or as a member which substantially covers an active surface of the semiconductor substrate and forms a protective structure over each semiconductor device carried by the active surface. Assemblies that include the support structure and a semiconductor substrate are also within the scope of the present invention, as are methods for forming the support structures and thinning and post-thinning processes that include use of the support structures.