Abstract:
Semiconductor devices are provided. A semiconductor device includes a substrate, a first conductive structure on the substrate, and a second conductive structure on the first conductive structure. The semiconductor device includes first and second metal-diffusion-blocking layers on respective sidewalls of the first and second conductive structures. The semiconductor device includes an insulating layer between the first and second metal-diffusion-blocking layers. Moreover, the semiconductor device includes a metal-diffusion-shield pattern in the insulating layer and spaced apart from the first conductive structure.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a substrate, a first conductive structure on the substrate, and a second conductive structure on the first conductive structure. The semiconductor device includes first and second metal-diffusion-blocking layers on respective sidewalls of the first and second conductive structures. The semiconductor device includes an insulating layer between the first and second metal-diffusion-blocking layers. Moreover, the semiconductor device includes a metal-diffusion-shield pattern in the insulating layer and spaced apart from the first conductive structure.
Abstract:
A semiconductor device includes a protective layer, a redistribution pattern, a pad pattern and an insulating polymer layer. The protective layer may be formed on a substrate. The redistribution pattern may be formed on the protective layer. An upper surface of the redistribution may be substantially flat. The pad pattern may be formed directly on the redistribution pattern. An upper surface of the pad pattern may be substantially flat. The insulating polymer layer may be formed on the redistribution pattern and the pad pattern. An upper surface of the insulating polymer layer may be lower than the upper surface of the pad pattern. The semiconductor device may have a high reliability.
Abstract:
A semiconductor device includes a substrate having a die region and a scribe region surrounding the die region, a plurality of via structures penetrating through the substrate in the die region, a portion of the via structure being exposed over a surface of the substrate, and a protection layer pattern structure provided on the surface of the substrate surrounding a sidewall of the exposed portion of the via structure and having a protruding portion covering at least a portion of the scribe region adjacent to the via structure.
Abstract:
A semiconductor device includes a protective layer, a redistribution pattern, a pad pattern and an insulating polymer layer. The protective layer may be formed on a substrate. The redistribution pattern may be formed on the protective layer. An upper surface of the redistribution may be substantially flat. The pad pattern may be formed directly on the redistribution pattern. An upper surface of the pad pattern may be substantially flat. The insulating polymer layer may be formed on the redistribution pattern and the pad pattern. An upper surface of the insulating polymer layer may be lower than the upper surface of the pad pattern.
Abstract:
A semiconductor device includes a substrate having a die region and a scribe region surrounding the die region, a plurality of via structures penetrating through the substrate in the die region, a portion of the via structure being exposed over a surface of the substrate, and a protection layer pattern structure provided on the surface of the substrate surrounding a sidewall of the exposed portion of the via structure and having a protruding portion covering at least a portion of the scribe region adjacent to the via structure.
Abstract:
A semiconductor device including an interconnection structure including a copper pad, a pad barrier layer and a metal redistribution layer, an interconnection structure thereof and methods of fabricating the same are provided. The semiconductor device includes a copper pad disposed on a first layer, a pad barrier layer including titanium disposed on the copper pad, an inorganic insulating layer disposed on the pad barrier layer, a buffer layer disposed on the inorganic insulating layer, wherein the inorganic insulating layer and the buffer layer expose a portion of the pad barrier layer, a seed metal layer disposed on the exposed buffer layer, a metal redistribution layer disposed on the seed metal layer, and a first protective layer disposed on the metal redistribution layer.
Abstract:
A semiconductor device and a method of manufacturing the same, the device including a through-hole electrode structure extending through a substrate; a redistribution layer on the through-hole electrode structure; and a conductive pad, the conductive pad including a penetrating portion extending through the redistribution layer; and a protrusion portion on the penetrating portion, the protrusion portion protruding from an upper surface of the redistribution layer, wherein a central region of an upper surface of the protrusion portion is flat and not closer to the substrate than an edge region of the upper surface of the protrusion portion.
Abstract:
An integrated circuit device can include a first Through Via (TV) region including first TV structures that are spaced apart from one another at a first pitch in first and second directions. A second TV region can include second TV structures that are spaced apart from one another at the first pitch in the first and second directions. A TV free region can separate directly adjacent first and second TV structures from one another by a spacing distance measured in the first or second direction that is greater than the first pitch and an alignment key can be defined as a geometric pattern including one of the second TV structures and the TV free region.
Abstract:
A semiconductor device includes an insulating layer on a surface of a substrate, a through-via structure vertically passing through the substrate and the insulating layer and being exposed on the insulating layer, and a via pad on a surface of the exposed through-via structure. The via pad includes a via pad body, and a via pad inlay below the via pad body and protruding into the insulating layer and surrounding the through-via structure. The via pad body and the via pad inlay include a via pad barrier layer directly on the insulating layer and a via pad metal layer on the via pad barrier layer.