摘要:
A semiconductor memory device is provided which includes a plurality of data lines, at least one redundant data line, one common data line, a plurality of column switches installed between the plurality of data lines and the redundant data line and one common data line, and a column decoder for controlling the plurality of column switches. The column decoder operates to turn the column switch on. The column switch is connected to a plurality of data lines, excluding any defective data and redundant data lines during the test mode state.
摘要:
A dynamic RAM provided with a data retention mode intended for low power consumption is provided. In the data retention mode, the current supply capabilities of voltage generation circuits which generate decreased voltage, increased voltage, reference voltage, etc., are limited in the range in which information retention operation in memory cells can be maintained, and the number of selected memory mats in the data retention mode is increased with respect to that of memory mats selected in the normal read/write mode and refresh mode. Special modes such as the data retention mode are set by combining an address strobe signal and other control signals and dummy CBR refresh is executed to release the special mode.
摘要:
A semiconductor memory device is provided which includes a substrate arrangement which is suitable for forming a large number of types of DRAMs having different package specifications, different bit structure and different operating modes. In conjunction with this, the bonding pads are arranged at optimum locations for accommodating the different package types. Various layout arrangements are also provided to minimize space and to improve access time. Additional features are provided, including improved output buffer circuitry, protection circuitry and testing methods to facilitate operation of the semiconductor memory device.
摘要:
A semiconductor memory device is provided which includes a substrate arrangement which is suitable for forming a large number of types of DRAMs having different package specifications, different bit structure and different operating modes. In conjunction with this, the bonding pads are arranged at optimum locations for accommodating the different package types. Various layout arrangements are also provided to minimize space and to improve access time. Additional features are provided, including improved output buffer circuitry, protection circuitry and testing methods to facilitate operation of the semiconductor memory device.
摘要:
A semiconductor memory device is provided which includes a substrate arrangement which is suitable for forming a large number of types of DRAMs having different package specifications, different bit structure and different operating modes. In conjunction with this, the bonding pads are arranged at optimum locations for accommodating the different package types. Various layout arrangements are also provided to minimize space and to improve access time. Additional features are provided, including improved output buffer circuitry, protection circuitry and testing methods to facilitate operation of the semiconductor memory device.
摘要:
A semiconductor integrated circuit memory structure is provided which uses macro-cellulated circuit blocks that can permit a very large storage capability (for example, on the order of 64 Mbits in a DRAM) on a single chip. To achieve, this, a plurality of macro-cellulated memory blocks can be provided, with each of the memory blocks including a memory array as well as additional circuitry such as address selection circuits and input/output circuits. Other peripheral circuits are provided on the chip which are common to the plurality of macro-cell memory blocks. The macro-cell memory blocks themselves can be formed in an array so that their combined storage capacity will form the large overall storage capacity of the chip. The combination of the macro-cell memory blocks and the common peripheral circuitry for controlling the memory blocks permits a faster and more efficient refreshing operation for a DRAM. This is enhanced by a LOC (Lead On Chip) arrangement used in conjunction with the memory blocks.
摘要:
An arrangement is provided for preventing DC defects in a memory or logic device after switching to a redundant circuit, improving the product yield of the device by cutting a leakage current path through a defective element or circuit. The cutting points formed by the predetermined wirings as a whole or a part thereof are provided to the device. A probe test of the formed chip is executed under the wafer condition by predetermined test equipment, and wiring correction data regarding the cutting of the cutting points is generated based on the result of test. Moreover, this wiring correction data is transmitted in an on-line fashion to the wiring correction equipment so that the corresponding cutting points can be cut. The wiring correction equipment can be formed by an EB direct writing apparatus, an FIB apparatus or a laser repair apparatus. With this arrangement, the leakage current path formed by a defective element or circuit left unused in conventional circuits is cut, and the product yield of the device is raised significantly. This arrangement can be used for a variety of memory or logic devices, including DRAMs, SRAMs, multiport memories and gate arrays.
摘要:
An arrangement is provided for preventing DC defects in a memory or logic device after switching to a redundant circuit, improving the product yield of the device by cutting a leakage current path through a defective element or circuit. The cutting points formed by the predetermined wirings as a whole or a part thereof are provided to the device. A probe test of the formed chip is executed under the wafer condition by predetermined test equipment, and wiring correction data regarding the cutting of the cutting points is generated based on the result of test. Moreover, this wiring correction data is transmitted in an on-line fashion to the wiring correction equipment so that the corresponding cutting points can be cut. The wiring correction equipment can be formed by an EB direct writing apparatus, an FIB apparatus or a laser repair apparatus. With this arrangement, the leakage current path formed by a defective element or circuit left unused in conventional circuits is cut, and the product yield of the device is raised significantly. This arrangement can be used for a variety of memory or logic devices, including DRAMs, SRAMs, multiport memories and gate arrays.
摘要:
A semiconductor device in which shield wiring is arranged between the semiconductor substrate and the power source wiring for supplying the power source potential or ground potential. Noise, as represented by variations in the potential of the semiconductor substrate, is substantially prevented from transferring to the aforementioned power source wiring by the shield wiring. In one aspect, shield wiring 1 is arranged between Vss wiring for supplying potential to the various circuits on the semiconductor substrate and substrate 7. This shield wiring 1 is connected to grounding lead frame 18 via M1 intra-chip wiring 4, M2 intra-chip wiring 5, connecting part 40, bonding pad 3 and bonding wire 8. Since the coupling impedance between shield wiring 1 and substrate 7 (due almost solely to the electrostatic capacitance Css) is large, and coupling impedance between Vss wiring 2 and substrate 7 (due almost solely to the junction capacitance D) is low, the noise caused by variations in the potential of substrate 7 is transferred to shield wiring 1, while it is not appreciably transferred to Vss wiring 2.
摘要:
Pattern data of a phase shift mask can be inspected: (101) by separating and laying out pattern data of a phase shift mask in an actual pattern data layer, an auxiliary pattern data layer and a phase shift pattern data layer; (102) by inspecting and correcting only the data of the actual pattern of the actual pattern data layer; (108) by making data of an estimated pattern estimated to be transferred to a semiconductor wafer from the data of the synthetic data of the correct actual pattern data, the auxiliary pattern data and the phase shift pattern data, which are inspected and corrected; and (104) by comparing the estimated pattern data and the actual pattern data to inspect the data of the auxiliary pattern and the phase shift pattern.