摘要:
The present invention is a mask and methods for making masks for use with a laser projection etching system. The unique mask is able to withstand the fluences of the high energy and high power lasers used without degrading. Specifically, the new projection etching masks are fabricated of patterned multiple dielectric layers having alternating high and low indices of refraction on a UV grade synthetic fused silica substrate in order to achieve maximum reflectivity of the laser energy in the opague areas and maximum transmissivity of the laser energy in the transparent areas of the mask.
摘要:
A system and method for injection molding conductive bonding material into a plurality of cavities in a non-rectangular mold is disclosed. The method comprises aligning a fill head with a non-rectangular mold. The non-rectangular mold includes a plurality of cavities. The fill head is placed in substantial contact with the non-rectangular mold. Rotational motion is provided to at least one of the non-rectangular mold and the fill head while the fill head is in substantial contact with the non-rectangular mold. Conductive bonding material is forced out of the fill head toward the non-rectangular mold. The conductive bonding material is provided into at least one cavity of the plurality of cavities contemporaneous with the at least one cavity being in proximity to the fill head.
摘要:
A system, method, and apparatus for injection molding conductive bonding material into a plurality of cavities in a surface are disclosed. The method comprises aligning a fill head with a surface. The mold includes a plurality of cavities. The method further includes placing the fill head in substantial contact with the surface. At least a first gas is channeled about a first region of the fill head. The at least first gas has a temperature above a melting point of conductive bonding material residing in a reservoir thereby maintaining the conductive bonding material in a molten state. The conductive bonding material is forced out of the fill head toward the surface. The conductive bonding material is provided into at least one cavity of the plurality of cavities contemporaneous with the at least one cavity being in proximity to the fill head.
摘要:
A conductive line is applied to a substrate by aligning the conductive line in juxtaposition with a selected area of the substrate; bonding the conductive line to the substrate; and detaching the conductive line from a carrier in which the conductive line is suspended. The carrier has a carrier opening defined by sidewalls, and conductive material is suspended by the sidewalls of the carrier opening so as to be embedded within the carrier opening, and form the conductive line.
摘要:
A system, method, and apparatus for injection molding conductive bonding material into a plurality of cavities in a surface are disclosed. The method comprises aligning a fill head with a surface. The mold includes a plurality of cavities. The method further includes placing the fill head in substantial contact with the surface. At least a first gas is channeled about a first region of the fill head. The at least first gas has a temperature above a melting point of conductive bonding material residing in a reservoir thereby maintaining the conductive bonding material in a molten state. The conductive bonding material is forced out of the fill head toward the surface. The conductive bonding material is provided into at least one cavity of the plurality of cavities contemporaneous with the at least one cavity being in proximity to the fill head.
摘要:
The present invention is a method for forming a liquid-crystal cell of a liquid-crystal display. Initially, a dry processed alignment film is deposited onto a first transparent substrate using a dry processing technique, such as plasma enhanced chemical vapor deposition (PECVD). The dry processed alignment film is then irradiated with a beam of atoms to arrange the atomic structure of the alignment film in at least one desired direction in order to orient the liquid-crystal molecules. Another dry processed alignment film is deposited on a second substrate using a dry processing technique and, likewise, irradiated with a beam of atoms. The first transparent substrate and the second substrate are then sandwiched together with their respective alignment films spaced adjacent to each other. The space between the films is then filled with a liquid-crystal material.
摘要:
A method of fabricating a high resolution ablation mask for use at laser fluences of greater than 200 mJ/cm.sup.2 is disclosed. The method comprises combining dry etching and chemical etching of an unetched ablation mask which comprises a transparent substrate, a layer of high UV light refractivity material, e.g. aluminum, deposited on said substrate, and a photoresist layer positioned on a predetermined area of said high UV light refractivity material layer leaving other areas of said high UV light refractivity material layer exposed.
摘要翻译:公开了一种在大于200mJ / cm 2的激光能量密度下制造高分辨率消融掩模的方法。 该方法包括组合干蚀刻和未蚀刻消融掩模的化学蚀刻,其包括透明衬底,高UV光折射材料层, 铝,沉积在所述衬底上,以及光致抗蚀剂层,其定位在所述高UV光折射率材料层的预定区域上,留下所述高UV光折射率材料层的其它区域暴露。
摘要:
A conductive line is applied to a substrate by aligning the conductive line in juxtaposition with a selected area of the substrate; bonding the conductive line to the substrate; and detaching the conductive line from a carrier in which the conductive line is suspended. The carrier has a carrier opening defined by sidewalls, and conductive material is suspended by the sidewalls of the carrier opening so as to be embedded within the carrier opening, and form the conductive line.
摘要:
A conductive line is applied to a substrate by aligning the conductive line in juxtaposition with a selected area of the substrate; bonding the conductive line to the substrate; and detaching the conductive line from a carrier in which the conductive line is suspended. The carrier has a carrier opening defined by sidewalls, and conductive material is suspended by the sidewalls of the carrier opening so as to be embedded within the carrier opening, and form the conductive line.