摘要:
A dielectric barrier layer composed of a metal oxide is applied in thin layers with a thickness of less than 20 nanometers in the course of processing semiconductor devices by sequential gas phase deposition or molecular beam epitaxy in molecular individual layers on differently structured base substrates. The method allows, inter alias, effective conductive diffusion barriers to be formed from a dielectric material, an optimization of the layer thickness of the barrier layer, an increase in the temperature budget for subsequent process steps, and a reduction in the effort for removing the temporary barrier layers.
摘要:
In a method for forming patterned ceramic layers, a ceramic material is deposited on a substrate and is subsequently densified by heat treatment, for example. In this case, the initially amorphous material is converted into a crystalline or polycrystalline form. In order that the now crystalline material can be removed again from the substrate, imperfections are produced in the ceramic material, for example by ion implantation. As a result, the etching medium can more easily attack the ceramic material, so that the latter can be removed with a higher etching rate. Through inclined implantation, the method can be performed in a self-aligning manner and the ceramic material can be removed on one side, by way of example, in trenches or deep trench capacitors.
摘要:
A method for producing a dielectric layer on a substrate made of a conductive substrate material includes reducing a leakage current that flows through defects of the dielectric layer at least by a self-aligning and self-limiting electrochemical conversion of the conductive substrate material into a nonconductive substrate follow-up material in sections of the substrate that are adjacent to the defects. Also provided is a configuration including a dielectric layer with defects, a substrate made of a conductive substrate material, and reinforcement regions made of the nonconductive substrate follow-up material in sections adjacent to the defects.
摘要:
A method for fabricating a semiconductor trench structure includes forming a trench in a semiconductor substrate and filling it with a filler. A first thermal process having a first maximum temperature cures the filler. Removing the filler from an upper region of the trench as far as a boundary surface defines a collar region. In a second thermal process having a second maximum temperature that is not significantly higher than the first maximum temperature, a liner is deposited on the collar region and the boundary surface. The liner is removed from the boundary surface, thereby exposing the filler. The filler is then removed from a lower region of the trench.
摘要:
An electrical component, such as a DRAM semiconductor memory or a field-effect transistor is fabricated. At least one capacitor having a dielectric (130) and at least one connection electrode (120, 140) are fabricated. To enable the capacitors fabricated to have optimum storage properties even for very small capacitor structures, the dielectric (130) or the connection electrode (120, 140) are formed in such a manner that transient polarization effects are prevented or at least reduced.
摘要:
A semiconductor module is described which is essentially constructed from a silicon material and has an insulation layer for example in the form of a gate insulation layer or a MOS transistor or in the form of an insulation layer of a memory cell for a dynamic memory module. The insulation layer preferably comprises a dielectric material whose band gap is greater than the band gap of SiO2. To construct the insulation layer, use is made of materials which have a metal-fluorine compound, such as e.g. lithium fluoride. Particularly thin insulation layers are provided by the material described.
摘要:
An electrical component, such as a DRAM semiconductor memory or a field-effect transistor is fabricated. At least one capacitor having a dielectric (130) and at least one connection electrode (120, 140) are fabricated. To enable the capacitors fabricated to have optimum storage properties even for very small capacitor structures, the dielectric (130) or the connection electrode (120, 140) are formed in such a manner that transient polarization effects are prevented or at least reduced.
摘要:
A storage capacitor, suitable for use in a DRAM cell, is at least partially formed above a substrate surface and includes: a storage electrode at least partially formed above the substrate surface, a dielectric layer formed adjacent the storage electrode, and a counter electrode formed adjacent the dielectric layer, the counter electrode being isolated from the storage electrode by the dielectric layer, wherein the storage electrode is formed as a body which is delimited by at least one curved surface having a center of curvature outside the body in a plane parallel to the substrate surface. According to another configuration, the storage electrode is formed as a body which is delimited by at least one set having two contiguous planes, the two planes extending perpendicularly with respect to the substrate surface, a point of intersection of normals of the two planes lying outside the body.
摘要:
The novel trench capacitors have a constant or increased capacitance. Materials for a second electrode region and if appropriate a first electrode region include a metallic material, a metal nitride, or the like, and/or a dielectric region is formed with a material with an increased dielectric constant. An insulation region is formed in the upper wall region of the trench after the first electrode region or the second electrode region has been formed, by selective and local oxidation.
摘要:
The present invention relates to a method for etching a trench in a semiconductor substrate. More specifically, the present invention relates to a method for etching deep trenches such as those having aspect ratios of 30 and higher. According to embodiments of the invention, a method for etching a trench in a semiconductor substrate includes a first etch cycle wherein the trench is etched to a first depth. Thereafter, a protective liner is deposited on at least the upper part of the trench's sidewalls. The protective liner includes inorganic material. During at least one second etch cycle, the trench is etched to its final depth.