Abstract:
A substrate processing method includes applying a solution of a compound containing a metal oxide to a surface of a wafer to form a liquid film of the solution on the surface of the wafer, heating the liquid film at a first temperature lower than a crosslinking temperature of the compound, and irradiating the liquid film with energy rays to form a coating film containing the metal oxide on the surface, after heating the liquid film at the first temperature.
Abstract:
A substrate processing apparatus includes a hot plate which supports and heats a substrate, a light source which emits etching energy beam such that the etching energy beam etches the substrate held by the hot plate, a window device which is positioned between the light source and the hot plate and transmits the etching energy beam emitted by the light source toward the substrate, and an adjusting device which adjusts emission amounts of the etching energy beam from portions of the window device toward the substrate such that the adjusting device reduces difference in etching amounts of portions of the substrate.
Abstract:
A substrate treatment method includes: developing a substrate which has a coating film of an inorganic resist formed on a base film thereon and has been subjected to an exposure treatment, with a developing solution to form a pattern of the inorganic resist; supplying an embedding solution to the developed substrate to fill a space between adjacent protrusions of the pattern; drying the filled embedding solution to form an embedded film on the substrate; and reducing a thickness of the embedded film by an ultraviolet ray.
Abstract:
The present disclosure provides a substrate processing method and a substrate processing apparatus which are effective in preventing pattern collapse of an uneven pattern. The substrate processing method according to an exemplary embodiment includes replacing a liquid in a recess of a substrate having an uneven pattern of a negative type resist including a metal formed on a surface of the substrate with a solid-state stiffener, and subjecting the substrate to a molecular weight reduction processing that reduces the number of intermolecular bonds contained in the solid-state stiffener while maintaining the solid-state stiffener in a solid state.
Abstract:
A thermal treatment apparatus that performs a thermal treatment on a metal-containing film formed on a substrate, includes: a treatment chamber that houses the substrate; a thermal treatment plate that is provided inside the treatment chamber and mounts the substrate thereon; and a moisture supply unit that supplies moisture to the metal-containing film, wherein at the time of the thermal treatment, moisture is supplied to the metal-containing film of the substrate on the thermal treatment plate and an atmosphere in the treatment chamber is exhausted from a central portion of the treatment chamber.