Abstract:
Provided are systems and methods for adapting to volume variations in microfluidic chromatography columns. A column is calibrated by comparing a parameter of the column with a same parameter of a reference column and generating, by a processor, an adjustment factor in response to the comparison between the parameter of the column with a same parameter of the reference column. Volume differences between the calibrated column and the reference column are compensated for by integrating the generated adjustment factor into a sample separation involving the calibrated column.
Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, a process that includes obtaining a porous medium comprising a porous material having a first shape and an initial porosity profile. The porous medium is engaged with a cavity in a fluidic device, wherein the cavity is in fluid communication with a channel of the fluidic device. The first shape of the porous material can be adjusted to a second shape resulting in the initial porosity profile being adjusted to a target porosity profile. Such adjustment can be accomplished by the engaging of the porous medium with the cavity, by pre-adjusting a shape of the porous media before insertion into the cavity, or by some combination thereof. Other embodiments are disclosed.
Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, a process that includes obtaining a porous medium comprising a porous material having a first shape and an initial porosity profile. The porous medium is engaged with a cavity in a fluidic device, wherein the cavity is in fluid communication with a channel of the fluidic device. The first shape of the porous material can be adjusted to a second shape resulting in the initial porosity profile being adjusted to a target porosity profile. Such adjustment can be accomplished by the engaging of the porous medium with the cavity, by pre-adjusting a shape of the porous media before insertion into the cavity, or by some combination thereof. Other embodiments are disclosed.
Abstract:
A microfluidic device for separating a sample by chromatography includes diffusion bonded metallic sheets joined together to create a hermetically sealed interface between each adjacent metallic sheet without the introduction of a secondary material. Enclosed within the diffusion bonded sheets is a separation channel accessible by at least one of an inlet or an outlet. The separation channel is packed with micrometer-sized particles serving as a stationary phase in a chromatographic separation. Wetted surfaces of the separation channel include a coating of an organic material at least one monolayer thick.
Abstract:
Provided are systems and methods for adapting to volume variations in microfluidic chromatography columns. A column is calibrated by comparing a parameter of the column with a same parameter of a reference column and generating, by a processor, an adjustment factor in response to the comparison between the parameter of the column with a same parameter of the reference column. Volume differences between the calibrated column and the reference column are compensated for by integrating the generated adjustment factor into a sample separation involving the calibrated column.
Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, a process that includes obtaining a porous medium comprising a porous material having a first shape and an initial porosity profile. The porous medium is engaged with a cavity in a fluidic device, wherein the cavity is in fluid communication with a channel of the fluidic device. The first shape of the porous material can be adjusted to a second shape resulting in the initial porosity profile being adjusted to a target porosity profile. Such adjustment can be accomplished by the engaging of the porous medium with the cavity, by pre-adjusting a shape of the porous media before insertion into the cavity, or by some combination thereof. Other embodiments are disclosed.
Abstract:
A method may include reducing fluid flow between a rotor and a microfluidic device. The method may further include reducing a sealing force between the rotor and the microfluidic device. The method may also include rotating the rotor relative to the microfluidic device, at the reduced sealing force, to change a fluid pathway therebetween. The method may additionally include reestablishing the sealing force to produce a fluid tight seal between the rotor and the microfluidic device. Moreover, the method may include reestablishing the fluid flow between the rotor and the microfluidic device.
Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, a process that includes obtaining a porous medium comprising a porous material having a first shape and an initial porosity profile. The porous medium is engaged with a cavity in a fluidic device, wherein the cavity is in fluid communication with a channel of the fluidic device. The first shape of the porous material can be adjusted to a second shape resulting in the initial porosity profile being adjusted to a target porosity profile. Such adjustment can be accomplished by the engaging of the porous medium with the cavity, by pre-adjusting a shape of the porous media before insertion into the cavity, or by some combination thereof. Other embodiments are disclosed.
Abstract:
Flow through pressure sensors for use in fluid chromatography systems include a planar device formed from diffusion bonding of a plurality of metallic sheets and at least one sensing element. The planar device has a top surface, a bottom surface and a flow through channel. A diaphragm formed from a portion of one of the top or bottom surfaces is located adjacent to a sensing region of the flow through channel and is attached to the sensing element. The diaphragm is sized to deflect a distance in response to fluid pressure in the sensing region, which has an internal volume of less than about 25 microliters. The diaphragm and attached sensing element form a pressure sensor that measures strain or deflection of the diaphragm to calculate a pressure within the sensing region.
Abstract:
Flow through pressure sensors for use in fluid chromatography systems include a planar device formed from diffusion bonding of a plurality of metallic sheets and at least one sensing element. The planar device has a top surface, a bottom surface and a flow through channel. A diaphragm formed from a portion of one of the top or bottom surfaces is located adjacent to a sensing region of the flow through channel and is attached to the sensing element. The diaphragm is sized to deflect a distance in response to fluid pressure in the sensing region, which has an internal volume of less than about 25 microliters. The diaphragm and attached sensing element form a pressure sensor that measures strain or deflection of the diaphragm to calculate a pressure within the sensing region.