摘要:
ZnTe is implanted with a first species selected from Group III and a second species selected from Group VII. This may be performed using sequential implants, implants of the first species and second species that are at least partially simultaneous, or a molecular species comprising an atom selected from Group III and an atom selected from Group VII. The implants may be performed at an elevated temperature in one instance between 70° C. and 800° C.
摘要:
In one embodiment, a method of producing a porous semiconductor film on a workpiece includes generating semiconductor precursor ions that comprise one or more of: germanium precursor ions and silicon precursor ions in a plasma of a plasma chamber, in which the semiconductor precursor ions are operative to form a porous film on the workpiece. The method further includes directing the semiconductor precursor ions to the workpiece over a range of angles.
摘要:
ZnTe is implanted with a first species selected from Group III and a second species selected from Group VII. This may be preformed using sequential implants, implants of the first species and second species that are at least partially simultaneous, or a molecular species comprising an atom selected from Group III and an atom selected from Group VII. The implants may be performed at an elevated temperature in one instance between 70° C. and 800° C.
摘要:
A guard aperture is described to control the ion angular distribution in plasma processing in one example a workpiece processing system has a plasma chamber, a plasma source to generate a plasma containing gas ions in the plasma chamber, the plasma forming a sheath above the workpiece, the sheath having an electric field, a workpiece holder in the chamber to apply a bias voltage to the workpiece to attract ions across the plasma sheath to be incident on the workpiece, a control aperture between the sheath and the workpiece, the aperture being positioned to modify an angular distribution of the ions that are incident on the workpiece, and a guard aperture between the sheath and the control aperture to isolate an electrical field of the control aperture from the plasma sheath.
摘要:
A plasma is formed from one or more gases in a plasma chamber using at least a first power and a second power. A first ion species is generated at said first power and a second ion species is generated at said second power. In one embodiment, the first ion species and second ion species are implanted into a workpiece at two different energies using at least a first bias voltage and a second bias voltage. This may enable implantation to two different depths. These on species may be atomic ions or molecular ions. The molecular ions may be larger than the gases used to form the plasma.
摘要:
Techniques for plasma processing a substrate are disclosed. In one particular exemplary embodiment, the technique may be realized with a method comprising introducing a feed gas proximate to a plasma source, where the feed gas may comprise a first and second species, where the first and second species have different ionization energies; providing a multi-level RF power waveform to the plasma source, where the multi-level RF power waveform has at least a first power level during a first pulse duration and a second power level during a second pulse duration, where the second power level may be different from the first power level; ionizing the first species of the feed gas during the first pulse duration; ionizing the second species during the second pulse duration; and providing a bias to the substrate during the first pulse duration.
摘要:
A method to provide a dopant profile adjustment solution in plasma doping systems for meeting both concentration and junction depth requirements. Bias ramping and bias ramp rate adjusting may be performed to achieve a desired dopant profile so that surface peak dopant profiles and retrograde dopant profiles are realized. The method may include an amorphization step in one embodiment.
摘要:
A method of forming an optical device is provided. The method includes disposing an optical device substrate on a substrate support in a process volume of a process chamber, the optical device substrate having a first surface; and forming a first optical layer on the first surface of the optical device substrate during a first time period when the optical device substrate is on the substrate support, wherein the first optical layer comprises one or more metals in a metal-containing oxide, a metal-containing nitride, or a metal-containing oxynitride, and the first optical layer is formed without an RF-generated plasma over the optical device substrate; and forming a second optical layer with an RF-generated plasma over the first optical layer during a second time period when the optical device substrate is on the substrate support.
摘要:
Embodiments of this doping method may be used to improve junction formation. An implant species, such as helium or another noble gas, is implanted into a workpiece to a first depth. A dopant is deposited on a surface of the workpiece. During an anneal, the dopant diffuses to the first depth. The noble gas ions may at least partially amorphize the workpiece during the implant. The workpiece may be planar or non-planar. The implant and deposition may occur in a system without breaking vacuum.
摘要:
A plasma processing apparatus includes a process chamber, a platen positioned in the process chamber for supporting a workpiece, a source configured to generate a plasma in the process chamber having a plasma sheath adjacent to the front surface of the workpiece, and an insulating modifier. The insulting modifier is configured to control a shape of a boundary between the plasma and the plasma sheath so a portion of the shape of the boundary is not parallel to a plane defined by a front surface of the workpiece facing the plasma. Controlling the shape of the boundary between the plasma and the plasma sheath enables a large range of incident angles of particles striking the workpiece to be achieved.