摘要:
Data management logic allocates a portion such as a single plane of a respective multi-plane non-volatile memory device to store parity information for corresponding data striped across multiple planes of multiple non-volatile memory devices. According to one configuration, the data management logic as discussed herein generates parity data based on (a data stripe of) non-parity data stored in multiple planes of multiple different memory devices. The data management logic stores the parity data in the storage plane allocated to store the parity information. Additional configurations include: reserving a parity block amongst multiple non-parity data blocks to store parity data and reserving a parity page amongst multiple non-parity data pages to store parity data.
摘要:
Methods, apparatuses and articles of manufacture may receive a first page of data and correct one or more errors in the first page of data to generate a page of corrected data. A program command may then be sent with a second page of data and the page of corrected data, to program a page of memory to store the second page of data.
摘要:
An electronic memory or controller may use a first type of read command, addressed to a first page of memory of an electronic memory that includes information to indicate that a second page of memory of the electronic memory has not been programmed and a second type of read command, addressed to the first page of memory, that includes information to indicate that the second page of memory has been programmed. The first page of memory may include a lower page of a multi-level cell (MLC), and the second page of memory may include an upper page of the same MLC. The second page of memory is enabled during a period of time that the first type of read command is used.
摘要:
Defect management logic extends a useful life of a memory system. For example, as discussed herein, failure detection logic detects occurrence of a failure in a memory system. Defect management logic determines a type of the failure such as whether the failure is an infant mortality type failure or a late-life type of failure. Depending on the type of failure, the defect management logic performs different operations to extend the useful life of the memory system. For example, for early life failures, the defect management logic can retire a portion of the block including the failure. For late life failures, due to excessive reads/writes, the defect management logic can convert the failing block from operating in a first bit-per-cell storage density mode to operating in a second bit-per-cell storage density mode.
摘要:
A page data (e.g., upper page data) received from a host is stored in a transfer buffer of a controller of a solid state drive. Another page data (e.g., lower page data) is read from a non-volatile memory (e.g., a NAND memory) to store in the transfer buffer as an error corrected page data. The error corrected page data and the page data are written to the non-volatile memory. In additional embodiments, a controller loads a page data (e.g., upper page data) received from the host in one or more NAND page buffers. The controller reads another page data (e.g., lower page data) from a NAND memory to store in a transfer buffer as an error corrected page data. The error corrected page data stored in the transfer buffer is loaded to the one or more NAND page buffers.
摘要:
Computer processor hardware receives notification that data stored in a region of storage cells in a non-volatile memory system stores invalid data. In response to the notification, the computer processor hardware marks the region as storing invalid data. The computer processor hardware controls the magnitude of erase dwell time (i.e., the amount of time that one or more cells are set to an erased state) associated with overwriting of the invalid data in the storage cells with replacement data. For example, to re-program respective storage cells, the data manager must erase the storage cells and then program the storage cells with replacement data. The data management logic can control the erase dwell time to be less than a threshold time value to enhance a life of the non-volatile memory system.
摘要:
A memory device may include two or more memory cells in an integrated circuit, at least one flash cell acting as a select gate coupled to the two or more memory cells, and an interface to accept a select gate erase command and a select gate program command during normal operation of the integrated circuit. The integrated circuit may be capable to perform operations to erase the at least one select gate in response to the select gate erase command, and program the at least one select gate in response to the select gate program command.
摘要:
Embodiments of the invention describe a dynamic read reference voltage for use in reading data from non-volatile memory cells. In embodiments of the invention, the read reference voltage is calibrated as the non-volatile memory device is used. Embodiments of the invention may comprise of logic and or modules to read data from a plurality of non-volatile memory cells using a first read reference voltage level (e.g., an initial read reference voltage level whose value is determined by the non-volatile device manufacturer). An Error Checking and Correction (ECC) algorithm is performed to identify whether errors exist in the data as read using the first read reference voltage level. If errors in the data as read are identified, a pre-determined value is retrieved to adjust the first read reference voltage level to a second read reference voltage level.
摘要:
Embodiments of the invention describe a dynamic read reference voltage for use in reading data from non-volatile memory cells. In embodiments of the invention, the read reference voltage is calibrated as the non-volatile memory device is used. Embodiments of the invention may comprise of logic and or modules to read data from a plurality of non-volatile memory cells using a first read reference voltage level (e.g., an initial read reference voltage level whose value is determined by the non-volatile device manufacturer). An Error Checking and Correction (ECC) algorithm is performed to identify whether errors exist in the data as read using the first read reference voltage level. If errors in the data as read are identified, a pre-determined value is retrieved to adjust the first read reference voltage level to a second read reference voltage level.
摘要:
Examples are disclosed for cycling endurance extending for memory cells of a non-volatile memory array. The examples include implementing one or more endurance extending schemes based on program/erase cycle counts or a failure trigger. The one or more endurance extending schemes may include a gradual read window expansion, a gradual read window shift, an erase blank check algorithm, a dynamic soft-program or a dynamic pre-program.