Abstract:
Various embodiments of a deep learning (DL)-based face perception engine for constructing, providing, and applying a highly-personalized face perception model for an individual through a deep learning process are disclosed. In some embodiments, a disclosed face perception engine includes a deep neural network configured for training a personalized face perception model for a unique individual based on a standard set of training images and a corresponding set of decisions on the set of training images provided by the unique individual. When sufficiently trained using the standard set of training images and the corresponding set of decisions, the personalized face perception model for the unique individual perceives a new face photo/image as if through the eyes of that unique individual. Hence, the trained face perception model can be used an “agent” or “representative” of the associated person in making very personal decisions, such as to decide if a given face photo/image includes a desirable face in the eyes of that person.
Abstract:
In an image processing method, an object is located within an image. An area around the object is determined and divided into at least first and second portions based upon image information within the area. The object can then be classified based upon both image information in the first portion of the area and image information in the second portion of the area.
Abstract:
A method for fabricating an IBIIIAVIA-group amorphous compound used for thin-film solar cells is provided. A mixture solution including elements of Group IB, IIIA, VIA or combinations thereof is provided. The mixture solution is heated and filtered. IBIIIAVIA-group amorphous powders are acquired after drying the heated and filtered mixture solution.
Abstract:
Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.
Abstract:
Methods, apparatus, and systems for performing fault diagnosis are disclosed herein. In one exemplary embodiment, a failure log is received comprising entries indicative of compressed test responses to chain patterns and compressed test responses to scan patterns. A faulty scan chain in the circuit-under-test is identified based at least in part on one or more of the entries indicative of the compressed test responses to chain patterns. One or more faulty scan cell candidates in the faulty scan chain are identified based at least in part on one or more of the entries indicative of the compressed test responses to scan patterns. The one or more identified scan cell candidates can be reported. Computer-readable media comprising computer-executable instructions for causing a computer to perform any of the disclosed methods are also provided. Likewise, computer-readable media storing lists of fault candidates identified by any of the disclosed methods are also provided.
Abstract:
Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.
Abstract:
A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor.
Abstract:
The visibility of an object in a digital picture is enhanced by comparing an input video of the digital picture with stored information representative of the nature and characteristics of the object to develop object localization information that identifies and locates the object. The input video and the object localization information are encoded and transmitted to a receiver where the input video and the object localization information are decoded and the decoded input video is enhanced by the decoded object localization information
Abstract:
In an image processing method, an object is located within an image. An area around the object is determined and divided into at least first and second portions based upon image information within the area. The object can then be classified based upon both image information in the first portion of the area and image information in the second portion of the area.
Abstract:
The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components. For example, semiconductor materials can be doped to form n-type and p-type semiconductor regions for making a variety of devices such as field effect transistors, bipolar transistors, complementary inverters, tunnel diodes, light emitting diodes, sensors, and the like.