Abstract:
The present invention relates to a polymer composition comprising the following components: A) 5 to 35 wt.-% based on the overall weight of the polymer composition of a recycled polyolefin fabric substrate; wherein said fabric substrate is coated with a polyolefin composition comprising the following components: a1) an ethylene based plastomer with a density determined according to ISO 1183-1 in the range of 0.857 to 0.915 g/cm3 and a MFR2 (190° C., 2.16 kg) determined according to ISO 1133 in the range of 0.5 to 30 g/10 min; and a2) a propylene based plastomer with a density determined according to ISO 1183-1 in the range of 0.850 to 0.910 g/cm3 and a MFR2 (230° C., 2.16 kg) determined according to ISO 1133 in the range of 0.01 to 30 g/10 min; B) 65 to 95 wt.-% based on the overall weight of the polymer composition of a homopolypropylene or a recycled polymer blend comprising b1) polypropylene and b2) polyethylene, wherein the weight ratio of b1) to b2) is from 3:7 to 12:1; with the proviso that components A) and B) add up to 100 wt.-%. Furthermore, the present invention relates to use of component A) for increasing the Charpy Notched Impact Strength of component B) and to an article comprising the polymer composition according to the present invention.
Abstract:
The invention provides a composition comprising the following: A) a first polymer selected from the following: i) an ethylene/α-olefin interpolymer; or ii) an ethylene/α-olefin multi-block interpolymer; B) a second polymer selected from the following: iii) an ethylene/α-olefin interpolymer; iv) an ethylene/α-olefin/non-conjugated diene interpolymer; or v) an ethylene/α-olefin multi-block interpolymer; and wherein the first polymer has a density from 0.880 to 0.910 g/cc, and the second polymer has a density less than, or equal to, 0.867 g/cc, and wherein the weight ratio of the first polymer to the second polymer is from 0.5 to 9.
Abstract:
The instant invention provides a polymer composition suitable for clear graphic cling film applications, method of producing the same, articles made therefrom, and methods for making such articles. The polymer composition suitable for clear graphic cling film applications, according to the present invention, comprises: (a) a polyolefin composition selected from the group consisting of a propylene-based composition, and an ethylene-based composition, wherein the propylene-based composition has an melt flow rate in the range of from 2 to 8 g/10 minutes, a dynamic mechanical spectroscopy (DMS) value in the range of from 3700 to 10100 Pascal-seconds at 0.1 radian per second, and from 650 to 1200 Pascal-seconds at 100 radian per second measured at 190° C., and having a crystallinity in the range of from at least 4 percent by weight to 11 percent by weight, and a heat of fusion of in the range of from 6 to 19 Joules/gram, and a DSC melting point of less than 110° C. (measured via DSC, second heat), and wherein the ethylene-based composition has a melt index (12) in the range of from 0.5 to 5 g/10 minutes, and a density in the range of from 0.865 to 0.880 g/cm, a DMS value in the range of from 1800 to 17000 Pascal-seconds at 0.1 radian per second, and from 750 to 2200 Pascal-seconds at 100 radian per second measured at 190° C., and having a crystallinity in the range of from at least 14 percent by weight to 20 percent by weight, and a heat of fusion in the range of from 40 to 60 Joules/gram, and a DSC melting point of less than 70° C. (measured via DSC, second heat), and (b) one or more alkyl phosphate-based release agent; wherein when said polyolefin composition is formed into a clear graphic cling film having a 7 (+2) mils, said clear graphic cling film has a haze in the range of from less than 4 percent, for example from 0.3 to 4 percent, measured according to ASTM-D 1003.
Abstract:
A permeable film, sheet or package for use in extending the storage life of a foodstuff or produce is provided. The film, sheet or package is formed from a plastics component, a porous component having a particle size generally smaller than the thickness of the film, sheet or package, and an acid component selected from at least one carboxylic acid compound in free or salt form. The permeable package is adapted for controlling the environment surrounding the foodstuff to manage its turgidity or senescence by managing the transfer of gases, particularly oxygen and carbon dioxide, and build up of moisture. In one preferred embodiment the present invention provides a permeable film for use in the storage of a foodstuff, formed from a polymer component, an activated clay component, and sorbic acid in free or salt form.
Abstract:
A film comprising a polymer blend of 0.3 to 0.8 wt % LDPE; and 99.2 to 99.7 wt % LLDPE, the LDPE having an MI of 0.1 to 0.6 dg/min, and the blend having a slice long chain branching of at least 0.96 for any portion of the composition having a molecular weight of 100,000 or above, wherein the film is formed from an extrudate of the blend.
Abstract:
The present invention relates to a Phase Change Material (PCM) composition comprising a) from 20 to 80 wt % of a PCM; and b) from 20 to 80 wt % of one or more polymers chosen from the group consisting of b1) Very Low Density Polyethylene (VLDPE) having a density equal or lower than 0.910 g/cm3 measured according to ASTM 792; b2) Ethylene Propylene Rubber (EPR) having a density equal or lower than 0.900 g/cm3 measured according to ASTM 792; b3) Styrene Ethylene Butadiene Styrene (SEBS) copolymers; and b4) Styrene Butadiene Styrene (SBS) copolymers. The PCM composition of the present invention can be used in applications where thermal management is needed, like for example in building, automotive, packaging, garments and footwear.
Abstract translation:本发明涉及相变材料(PCM)组合物,其包含a)20至80wt%的PCM; 和b)20至80重量%的一种或多种选自b1)极低密度聚乙烯(VLDPE)的聚合物,密度等于或低于0.910g / cm 3的浓度根据 至ASTM 792; b2)密度等于或低于0.900g / cm 3的乙烯丙烯橡胶(EPR)根据ASTM 792测量; b3)苯乙烯乙烯丁二烯苯乙烯(SEBS)共聚物; 和b4)苯乙烯丁二烯苯乙烯(SBS)共聚物。 本发明的PCM组合物可用于需要热管理的应用中,例如在建筑,汽车,包装,服装和鞋类中。
Abstract:
Zero halogen polyolefin compositions exhibit low smoke emission, low corrosivity, low toxicity, and low heat release properties, as well as flame resistance and char formation, while simultaneously maintaining favorable electrical insulation properties. Such compositions are especially useful for coating wires and conductors employed in high-speed speed telecommunication data transmission cables.
Abstract:
The present invention relates to lignin compositions and methods for producing lignin composite materials. Composites of this invention substantially reduce or eliminate odor emanating from lignin that would otherwise be present.
Abstract:
The present invention relates to a thermoplastic material, wherein the thermoplastic material comprises ethylene-based polymer material, wherein the ethylene-based polymer material has a Vicat softening temperature of ≥50° C. as determined in accordance with ISO 306 (2013), method A50, and a weight loss as determined on a compression moulded sheet according to ISO 15527 (2010), Annex B, using silica sand/water slurry with a mass ratio of 3:2, test duration 7 h, of ≤0.50 wt %. The invention also relates to a slurry transportation pipe comprising the thermoplastic material as its inner layer, or consisting of the thermoplastic material.
Abstract:
The heat-recoverable article according to the present invention has a cylindrical shape and includes a base material layer. The base material layer contains a polyolefin-based resin. In the base material layer after being heated at 180° C. for 2 minutes, a melting-point peak temperature is 115° C. or higher and 128° C. or lower, a heat of fusion of a total resin component is 80 J/g or more and 150 J/g or less, a storage modulus at 120° C. is 4 MPa or more, a gel fraction is 40% by mass or more and 80% by mass or less, and a storage modulus at 180° C. is 0.5 MPa or more and less than 3.0 MPa. The polyolefin-based resin is preferably a mixture of a first polyolefin-based resin having a melting point of 125° C. or higher and 135° C. or lower and a second polyolefin-based resin having a melting point of lower than 125° C.