Abstract:
In a module (51) including circuit elements, a plurality of wires (12), which are generally two-dimensionally formed, are multi-layered via electrically insulating material (11), which comprises a mixture including at least filler and electrically insulating resin. One or more circuit elements are electrically connected to the wires, and at least a part of those circuit elements is embedded in the electrically insulating material. The module (51) further includes a heat sink member (13) that has a higher thermal conductivity than the electrically insulating material, and that, when viewed from the direction of multi-layering the wires, overlaps with a circuit element (14), which is one of those circuit elements, exhibiting the highest temperature rise at least in the module.
Abstract:
The invention relates to a printed circuit board comprising at least one non conductive support plate (1) equipped with components and printed conductors for electrically contacting said components, at least one low-current circuit arrangement (2) for coupling or transmitting low current outputs and at least one high-current circuit arrangement (3) for coupling and/or transmitting high current outputs. Printed circuit boards of this type are known, but have the disadvantage of being inflexible or expensive to produce. To solve this problem, the inventive high-current circuit arrangement is only situated in one section of the printed circuit board and in order to house the printed conductors (4) and/or the contact block (5) of the high-current circuit arrangement (3), the support plate (1) comprises at least one component receptacle (6) in the form of a pocket-type recess or continuous cavity, in which the printed conductors (4) and/or the contact block (5) of the high-current circuit arrangement (3) are mounted.
Abstract:
A circuit arrangement comprises a circuit board (10), a semi-conductor (12) provided on a first side of the circuit board, and a heat sink (15) provided on a second side of the circuit board opposite to the first side and in heat transferring contact with the power semi-conductor. A heat conductive element (13) is provided in a hole (10a) in the circuit board, wherein the heat conductive element is positioned in heat transferring contact with both the semi-conductor and the heat sink for transfer of heat generated by the semi-conductor to the heat sink. A circuit arrangement is provided, wherein the provision of a low thermal resistance path through the circuit board by means of heat conductive elements provides a compact circuit arrangement well suited for assembly by means of an automated surface mounting process.
Abstract:
Es wird eine Leiterplatte angegeben, mit einer thermisch leitende und elektrisch isolierenden Schicht (1) an der Oberseite der Leiterplatte (6) und ein Wärmeleitelement (2), das die Schicht (1) thermisch mit der Unterseite der Leiterplatte (6) verbindet. Ferner wird ein Verfahren zur Herstellung einer solchen Leiterplatte (6) angegeben. Die Leiterpatte (6) zeichnet sich dabei besonders durch ihre guten Wärmeleiteigenschaften aus.
Abstract:
A heat conductive substrate (50) is mounted within a through-opening (60) of a printed circuit board (52). An integrated circuit (42) then is mounted to one side of the heat conductive substrate, while a heat sink (90) is fixed in thermal contact to the other side of the substrate. There is no direct thermal contact between the IC and the PC board. The heat conductive substrate is mounted to the PC board by applying a controlled pressure to normal surfaces of multiple portions (71) of the substrate. Such pressure reducing the thickness and expands the area of the pressed portions locking the substrate to the PC board. An air gap (75) occurs between the substrate and the PC board everywhere except for the pressed regions of the substrate. Such pressed regions occur along the periphery (67) of the substrate.
Abstract:
A heat radiation electrode (15) is exposed from the back surface of an insulating resin (13), and a metal plate (23) is affixed to the heat radiation electrode (15). The back surface of this metal plate (23) and the back surface of a first supporting member (11) are substantially within a same plane, so that it is readily affixed to a second supporting member (24). Accordingly, the heat generated by the semiconductor chip can be efficiently dissipated via the heat radiation electrode (15), the metal plate (23) and the second supporting member (24).
Abstract:
Die Leiterplatte für elektrische Schaltungen ist mit einer Trägerplatte (12) versehen, die eine Ober- und eine Unterseite (14,16) aufweist, wobei sich in mindestens einer dieser Seiten (14,16) der Trägerplatte (12) eine von einem Rand begrenzte Ausnehmung (22) befindet. Ferner ist die Leiterplatte mit einem ein elektrisch leitendes Material aufweisenden Wärmeleitelement (24) versehen, das in die mindestens eine Ausnehmung (22) eingepasst und im wesentlichen mit der betreffenden Seite (14,16) der Trägerplatte (12) fluchtend angeordnet ist. Auf mindestens der mit der mindestens einen Ausnehmung (22) versehenen Seite (14,16) der Trägerplatte (12) verlaufen Leiterbahnen (32) aus elektrisch leitendem Material. Das Wärmeleitelement (24) ist von dem elektrisch leitenden Material der Leiterbahnen (32) überdeckt und diese Überdeckung (34) erstreckt sich zumindest bereichsweise bis über den Rand der Ausnehmung (22).
Abstract:
Die Erfindung betrifft eine elektrische Einrichtung mit einer metallkaschierten Leiterplatte, der ein auf einer ihrer beiden Oberflächen angeordneter, an von Anteilen der Metallkaschierung gebildeten Leiterbahnen der Leiterplatte angeschlossener, Wärmeenergie abgebender elektrischer Baustein zugeordnet ist, der über ein in einem mit einer an seiner Wandung vorhandenen duktilen Metallschicht versehenen Durchbruch der Leiterplatte form- und kraftschlüssig gehaltenes metallisches Verbindungselement mit einem auf der anderen der beiden Oberflächen der Leiterplatte angeordneten Kühlkörper über ein wärmeleitendes Mittel gekoppelt ist, dadurch gekennzeichnet, daß die in dem Durchbruch vorhandene duktile Metallschicht zur elektrischen Verbindung von auf beiden Oberflächen der Leiterplatte angeordneten Anteilen der Metallkaschierung vorgesehen ist und mit einer am Verbindungselement vorhandenen, strukturierten Oberfläche in mechanischem Eingriff steht, die an einem dem Durchbruch zugeordneten (ersten) Bereich des Verbindungselementes ausgebildet ist.
Abstract:
A modular power supply. A plurality of power supply modules and a system control circuit for controlling the power supply modules are provided. Each power supply module has a power circuit coupled to a power input of the module for receiving an input power current and produces an output power current at a power output of the module. The power circuits each include at least one switching element for switching the input power current or the output power current of a module. The power circuits further include a control circuit input that is coupled directly to the respective said switching device. The system control circuit includes a control circuit output bus for connecting to the control circuit inputs of each of the power modules and provides a respective signal to each module for directly controlling the respective switching devices.
Abstract:
The present invention relates to the methods of construction for inductive components of, preferably, ferromagnetic materials such as inductors, chokes, and transformers when used as an integral part of the fabrication of PCB's or FLEX's. In one preferred embodiment, holes (56, 58) are formed through a ferromagnetic substrate (50) and plated with conductive material. The arrangement of these holes, and the subsequent design that ensues, will form the inductive components within the plane of the media in which the device is formed; using the substrate (50) for a magnetic core (90). By using this approach, the inductive components can be miniaturized to physical sizes compatible with the requirements of modern surface mount technology (SMT) for integrated circuitry (IC). This process also allows these components to be fabricated using mass production techniques, thereby avoiding the need to handle discrete devices during the manufacturing process. In another preferred embodiment, a series of thin, concentric high permeability rings (315) are etched on a substrate (330) to provide high permeability transformers and inductors having minimal eddy current effects.