Abstract:
Vorgestellt wird eine Leiterplatte für Kraftfahrzeugbeleuchtungseinrichtungen, die einen Schichtstapel mit mehreren Metallschichten und mehreren dielektrischen Schichten aufweist. Erste metallische Durchkontaktierungen dienen zur thermischen Verbindung einer dritten mit einer zweiten Metallschicht. Zweite metallische Durchkontaktierungen dienen zur thermischen Verbindung der zweiten und einer ersten Metallschicht. Die Beleuchtungseinrichtung zeichnet sich durch fünf erste Durchkontaktierungen und vier zweite Durchkontaktierungen aus, wobei vier erste Durchkontaktierungen Eckpunkte eines ersten Rechtecks bilden, die fünfte der ersten Durchkontaktierungen im Schnittpunkt der Diagonalen des ersten Rechtecks liegt, und die vier zweiten Durchkontaktierungen auf den Eckpunkten eines zweiten Rechtecks liegen, wobei jeweils ein Eckpunkt des zweiten Quadrats in der Mitte einer Seite des ersten Rechtecks liegt.
Abstract:
A hybrid electromagnetic bandgap (EBG) structure for broadband suppression of noise on printed wiring boards includes an array of coplanar patches interconnected into a grid by series inductances, and a corresponding array of shunt LC networks connecting the coplanar patches to a second conductive plane. This combination of series inductances and shunt resonant vias lowers the cutoff frequency for the fundamental stopband. The series inductances and shunt capacitances may be implemented using surface mount component technology, or printed traces. Patches may also be interconnected by coplanar coupled transmission lines. The even and odd mode impedances of the coupled lines may be increased by forming slots in the second conductive plane disposed opposite to the transmission line, lowering the cutoff frequency and increasing the bandwidth of the fundamental stopband. Coplanar EBG structures may be integrated into power distribution networks of printed wiring boards for broadband suppression of electromagnetic noise.
Abstract:
Tuned Electromagnetic Bandgap (EBG)devices (10, 30), and a method for making and tuning tuned EBG devices (10, 30) are provided. The method includes the steps of providing first and second overlapping substrates (32, 32a), placing magnetically alignable conductive material (36) between the substrates (32, 32a), and applying a magnetic field (44, 45) in the vicinity of the magnetically alignable conductive material (36) to align at least some of the material into conductive vias (46, 47). The method further includes the steps of physically altering via characteristics of EBG devices (10, 30) to tune the bandpass and resonant frequencies of the EBG devices (10, 30).
Abstract:
A thermal management device 13 comprising anisotropic carbon 10 encapsulated in an encapsulating material 12 that improves the strength of the carbon. The encapsulating material may be polyimide or epoxy resin or acrylic or polyurethane or polyester 12 or any other suitable polymer.
Abstract:
A multi-layer circuit panel assembly is formed by laminating circuit panels (10) with interposers (12) incorporating flowable conductive material (48) at interconnect locations and a flowable dielectric material (30, 38) at other locations. Excess materials are captured in reservoirs (20) in the circuit panels. The flowable materials and reservoirs allow the interposers to compress and take up tolerances in the components. The stacked panels may have contacts (538) on their top surfaces, through conductors (527) extending between top and bottom and terminals (530) connected to the bottom end of each through conductor. The terminals and contacts are nonselectively connected to one another at each interface so that wherever a terminal and contact an adjacent panels are aligned with one another, these are connected to one another. This forms composite vertical conductors extending through a plurality of the panels. The selective treatment of the panel top and bottom surfaces provides selective interruptions in the vertical conductors.
Abstract:
Der erfindungsgemässe Kern für elektrische Verbindungssubstrate, insbesondere für Leiterplatten und Folienleiterplatten, weist eine Innenschicht (I) mit einer Säulenstruktur auf und beidseitige, metallische Deckschichten (A, A'), wobei die Säulenstruktur der Innenschicht (I) aus vorteilhafterweise regelmässig angeordneten, voneinander und von den Deckschichten (A, A') beabstandeten, quer zur flächigen Ausdehnung des Kerns gerichteten Säulen (9.1, 9.2) aus einem elektrisch leitenden Material in einer Matrix (6) aus einem elektrisch isolierenden Material besteht. Die Deckschichten (A, A') weisen beispielsweise elektrische Anschlüsse (16, 16', 17, 17') in Form von durchplattierten Sacklöchern (13, 14) an ausgewählte Säulen (9) der Innenschicht (I) auf und sind derart strukturiert, dass sie ein regelmässiges Muster von Anschlüssen (16, 16') an die gegenüberliegende Deckschicht und Anschlüssen (17, 17') an von den Deckschichten isolierte Durchsteiger aufweisen. Dieses Rastermuster kann ein Rastermass in der Gegend von 0,5 mm aufweisen.
Abstract:
Electrical impedance matching for through plane connections or vias (20-44) in a multiplane laminated wiring structure is provided by arranging the vias in patterns conforming to a standard characteristic impedance configuration. The pattern may be a five wire configuration with four vias surrounding the fifth and repeated over the area of the plane.
Abstract:
A circuit board in which the patterns of electrically conductive strips and/or pads can be of either standard or non-standard form and which can be designed and assembled by a user comprises a rigid electrically insulating board 1 having a multiplicity of holes 2 through the board arranged in a pattern of rows and columns and, secured to one major surface of the board, a separately formed flexible sheet 4 of electrically insulating material carrying on the surface of the sheet remote from the board a pattern of electrically conductive strips and/or pads 8 which overlies holes in the board. The strips and/or pads 8 are of such an electrically conductive material and of such a thickness that, when a pin C is urged through an electrically conductive strip or pad and the underlying flexible sheet 4 into an underlying hole 2 in the board, electrically conductive material pierced by the pin will effect an electrical contact with the pin passing through the material.