Abstract:
Disclosed is a carrier for manufacturing a printed circuit board, which includes a first carrier including a first binder having a first opening and a first metal layer formed in the first opening of the first binder, and a second carrier, stacked with the first carrier and including a second binder having a second opening and a second metal layer which is formed in the second opening of the second binder and which partially overlaps with the first metal layer, so that the carrier is simply configured and the binders are formed not only on the lateral surfaces of the metal layers but also on the upper surfaces thereof, thus improving the reliability of bonding of the carrier at the periphery. A method of manufacturing the carrier and a method of manufacturing a printed circuit board using the carrier are also provided.
Abstract:
Disclosed is a package substrate, in which the plating area of a first plating layer formed on a layer which is to be connected to a motherboard is larger than the plating area of a second plating layer formed on a layer which is to be connected to an electronic part, and open portions are formed on the first plating layer, thus balancing the plating areas of the plating layers formed on the layers of the package substrate, thereby minimizing warpage of the package substrate due to differing coefficients of thermal expansion.
Abstract:
Disclosed herein is a coreless substrate having filled via pads and a method of manufacturing the same. Insulating layers are formed on both sides of a build-up layer, and via-pads are embedded in the insulating layers such that the via-pads are flush with the insulating layers. The via pads are not separated from a substrate, and thus reliability of the pads is increased. Flatness of bumps is increased, and thus bonding of flip chips becomes easy.
Abstract:
Disclosed herein is a printed circuit board having round solder bumps and a method of manufacturing the same. The solder bump is configured to have a round connecting surface in contact with a pad, and thus have an increased contact area with respect to the pad, thus improving connection reliability. The solder bumps have uniform heights.
Abstract:
Disclosed herein is a printed circuit board with embedded capacitors therein which comprises inner via holes filled with a high dielectric polymer capacitor paste composed of a composite of BaTiO3 and an epoxy resin, and a process for manufacturing the printed circuit board.
Abstract:
This invention relates to tacrolimus injection comprising tacrolimus as an active ingredient, macrogol 15 hydroxystearate as a surfactant and a non-aqueous solvent.
Abstract:
Disclosed is a method of fabricating a PCB including an embedded passive chip, in which the passive chip is mounted on the PCB and an insulator is then laminated on the PCB, or in which a blind hole for receiving the passive chip is formed in the PCB and the passive chip is mounted in the blind hole.
Abstract:
Disclosed herein are a printed circuit board with embedded capacitors therein and a process for manufacturing the printed circuit board. The embedded capacitors are formed by applying a photosensitive insulating resin to a printed circuit board inner layer, and applying a high dielectric polymer capacitor paste thereto.
Abstract:
Disclosed herein is a coreless substrate having filled via pads and a method of manufacturing the same. Insulating layers are formed on both sides of a build-up layer, and via-pads are embedded in the insulating layers such that the via-pads are flush with the insulating layers. The via pads are not separated from a substrate, and thus reliability of the pads is increased. Flatness of bumps is increased, and thus bonding of flip chips becomes easy.
Abstract:
Disclosed is a package substrate, in which the plating area of a first plating layer formed on a layer which is to be connected to a motherboard is larger than the plating area of a second plating layer formed on a layer which is to be connected to an electronic part, and the plating thickness of the second plating layer is greater than the plating thickness of the first plating layer, thus balancing the plating volumes of the plating layers formed on the layers of the package substrate, thereby minimizing warpage of the package substrate which results from the coefficients of thermal expansion being different.