摘要:
A method and apparatus are provided for reworking of finishing metallurgy on pads of electronic components. The pads are copper or copper/nickel and have a layer of nickel thereon and an overlying layer of gold. The gold layer is removed first followed by the nickel layer and then the component is treated to remove etch and corrosion products. Media blasting is then used to restore the pads to their original condition as on prime parts. The pads are then replated using conventional nickel and gold plating solutions to form the reworked component.
摘要:
In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
摘要:
In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
摘要:
One embodiment of the present invention is directed to an under bump metallurgy material. The under bump metallurgy material of this embodiment includes an adhesion layer and a conduction layer formed on top of the adhesion layer. The under bump metallurgy material of this embodiment also includes a barrier layer plated on top of the conduction layer and a sacrificial layer plated on top of the barrier layer. The conduction layer of this embodiment includes a trench formed therein, the trench contacting a portion of the barrier layer and blocking a path of intermetallic formation between the conduction layer and the sacrificial layer.
摘要:
One embodiment of the present invention is directed to an under bump metallurgy material. The under bump metallurgy material of this embodiment includes an adhesion layer and a conduction layer formed on top of the adhesion layer. The under bump metallurgy material of this embodiment also includes a barrier layer plated on top of the conduction layer and a sacrificial layer plated on top of the barrier layer. The conduction layer of this embodiment includes a trench formed therein, the trench contacting a portion of the barrier layer and blocking a path of intermetallic formation between the conduction layer and the sacrificial layer.
摘要:
A structure. The structure includes a layered configuration including a copper layer, a first layer, and a second layer. The first and second layers are disposed on opposite sides of the copper layer and are in direct mechanical contact with the copper layer. The first and second layers each include a same alloy of nickel and a metal consisting of cobalt, iron, copper, manganese, or molybdenum. A first region in the first layer extends completely through the first layer. A second region in the second layer extends completely through the second layer. A third region in the first layer extends completely through the first layer. The third region does not extend into any portion of the second layer. The first, second region, and third regions each include a photoresist or an opening such that photoresist or opening extends completely through the first, second, and first layer, respectively.
摘要:
An apparatus for providing uniform axial load distribution for laminate layers of multilayer ceramic chip carriers includes a base plate configured to support a plurality of green sheet layers thereon, the base plate having at least one resiliently mounted load support bar disposed adjacent outer edges of the base plate. The load support bar is mounted on one or more biasing members such that the top surface of the support bar extends above the top surface of the base plate by a selected distance.
摘要:
Disclosed is a method of manufacturing integrated circuit chips that partially joins an integrated circuit wafer to a supporting wafer at a limited number of joining points. Once joined, the integrated circuit wafer is chemically-mechanically polished to reduce the thickness of the integrated circuit wafer. Then, after reducing the thickness of the integrated circuit wafer, the invention performs conventional processing on the integrated circuit wafer to form devices and wiring in the integrated circuit wafer. Next, the invention cuts through the integrated circuit wafer and the supporting wafer to form chip sections. During this cutting process, the integrated circuit wafer separates from the supporting wafer in chip sections where the integrated circuit wafer is not joined to the supporting wafer by the joining points. Chip sections where the integrated circuit wafer remains joined to the supporting wafer are thicker than the chips sections where the integrated circuit wafer separates from the supporting wafer.
摘要:
An apparatus for providing uniform axial load distribution for laminate layers of multilayer ceramic chip carriers includes a base plate configured to support a plurality of green sheet layers thereon, the base plate having at least one resiliently mounted load support bar disposed adjacent outer edges of the base plate. The load support bar is mounted on one or more biasing members such that the top surface of the support bar extends above the top surface of the base plate by a selected distance.
摘要:
Disclosed is a method of manufacturing integrated circuit chips that partially joins an integrated circuit wafer to a supporting wafer at a limited number of joining points. Once joined, the integrated circuit wafer is chemically-mechanically polished to reduce the thickness of the integrated circuit wafer. Then, after reducing the thickness of the integrated circuit wafer, the invention performs conventional processing on the integrated circuit wafer to form devices and wiring in the integrated circuit wafer. Next, the invention cuts through the integrated circuit wafer and the supporting wafer to form chip sections. During this cutting process, the integrated circuit wafer separates from the supporting wafer in chip sections where the integrated circuit wafer is not joined to the supporting wafer by the joining points. Chip sections where the integrated circuit wafer remains joined to the supporting wafer are thicker than the chips sections where the integrated circuit wafer separates from the supporting wafer.