Abstract:
A semiconductor device includes gates and a low-k spacer. The low-k spacer includes low-k spacer portions formed upon the gate sidewalls and a low-k spacer portion formed upon a top surface of an underlying substrate adjacent to the gates. When a structure has previously undergone a gate processing fabrication stage, the gates and at least a portion of the top surface of the substrate may be exposed thereby allowing the formation of the low-k spacer. This exposure may include removing any original gate spacers, removing an original liner formed upon the original spacers, and removing any original fill material formed upon the liner.
Abstract:
A semiconductor structure includes a substrate, and a replacement metal gate (RMG) structure is attached to the substrate. The RMG structure includes a lower portion and an upper tapered portion. A source junction is disposed on the substrate and attached to a first low-k spacer portion. A drain junction is disposed on the substrate and attached to a second low-k spacer portion. A first oxide layer is disposed on the source junction, and attached to the first low-k spacer portion. A second oxide layer is disposed on the drain junction, and attached to the second low-k spacer portion. A cap layer is disposed on a top surface layer of the RMG structure and attached to the first oxide layer and the second oxide layer.
Abstract:
A method of forming a semiconductor structure that includes compressive strained silicon germanium alloy fins having a first germanium content and tensile strained silicon germanium alloy fins having a second germanium content that is less than the first germanium content is provided. The different strained and germanium content silicon germanium alloy fins are located on a same substrate. The method includes forming a cladding layer of silicon around a set of the silicon germanium alloy fins, and forming a cladding layer of a germanium containing material around another set of the silicon germanium alloy fins. Thermal mixing is then employed to form the different strained and germanium content silicon germanium alloy fins.
Abstract:
A semiconductor device is disclosed. The semiconductor device can include a first dielectric layer disposed on a substrate; a set of bias lines disposed on the first dielectric layer; a second dielectric layer disposed on the first dielectric layer and between the set of bias lines, wherein a thickness of the second dielectric layer is less than a thickness of the first dielectric layer; a patterned semiconductor layer disposed on portions of the second dielectric layer; and a set of devices disposed on the patterned semiconductor layer above the set of bias lines.
Abstract:
Forming a semiconductor structure includes forming a dummy gate stack on a substrate including a sacrificial spacer on the peripheral of the dummy gate stack. The dummy gate stack is partially recessed. The sacrificial spacer is etched down to the partially recessed dummy gate stack. Remaining portions of the sacrificial spacer are etched leaving gaps on sides of a remaining portion of the dummy gate stack. A first low-k spacer portion and a second low-k spacer portion are formed to fill gaps around the remaining portions of the dummy gate stack and extending vertically along a sidewall of a dummy gate cavity. The first and second low-k spacer portions are etched. A poly pull process is performed on the remaining portions of the dummy gate stack. A replacement metal gate (RMG) structure is formed with the first low-k spacer portion and the second low-k spacer portion.
Abstract:
A semiconductor structure including a semiconductor wafer. The semiconductor wafer includes a gate structure, a first trench in the semiconductor wafer adjacent to a first side of the gate structure and a second trench adjacent to a second side of the gate structure, the first and second trenches filled with a doped epitaxial silicon to form a source in the filled first trench and a drain in the filled second trench such that each of the source and drain are recessed and have an inverted facet. In a preferred exemplary embodiment, the epitaxial silicon is doped with boron.
Abstract:
Semiconductor devices and methods for making the same includes conformally forming a first spacer on a plurality of fins. A second spacer is conformally formed on the first spacer, the second spacer being formed from a different material from the first spacer. The plurality of fins are etched below a bottom level of the first spacer to form a fin cavity. Material from the first spacer is removed to expand the fin cavity. Fin material is grown directly on the etched plurality of fins to fill the fin cavity.
Abstract:
A method of forming a semiconductor device that includes forming a plurality of semiconductor pillars. A dielectric spacer is formed between at least one set of adjacent semiconductor pillars. Semiconductor material is epitaxially formed on sidewalls of the adjacent semiconductor pillars, wherein the dielectric spacer obstructs a first portion of epitaxial semiconductor material formed on a first semiconductor pillar from merging with a second portion of epitaxial semiconductor material formed on a second semiconductor pillar.
Abstract:
A gate structure straddling a plurality of semiconductor material portions is formed. Source regions and drain regions are formed in the plurality of semiconductor material portions, and a gate spacer laterally surrounding the gate structure is formed. Epitaxial active regions are formed from the source and drain regions by a selective epitaxy process. The assembly of the gate structure and the gate spacer is cut into multiple portions employing a cut mask and an etch to form multiple gate assemblies. Each gate assembly includes a gate structure portion and two disjoined gate spacer portions laterally spaced by the gate structure portion. Portions of the epitaxial active regions can be removed from around sidewalls of the gate spacers to prevent electrical shorts among the epitaxial active regions. A dielectric spacer or a dielectric liner may be employed to limit areas in which metal semiconductor alloys are formed.
Abstract:
One example disclosed herein involves forming source/drain conductive contacts to first and second source/drain regions, the first source/drain region being positioned between a first pair of transistor devices having a first gate pitch dimension, the second source/drain region being positioned between a second pair of transistor devices having a second gate pitch dimension that is greater than the first gate pitch dimension, wherein the first and second pairs of transistor devices have a gate structure and sidewall spacers positioned adjacent the gate structure.