Abstract:
A method of forming an epitaxial semiconductor material that includes forming a graphene layer on a semiconductor and carbon containing substrate and depositing a metal containing monolayer on the graphene layer. An epitaxial layer of a gallium containing material is formed on the metal containing monolayer. A layered stack of the metal containing monolayer and the epitaxial layer of gallium containing material is cleaved from the graphene layer that is present on the semiconductor and carbon containing substrate.
Abstract:
A punch through stop layer is formed in a bulk FinFET structure using doped oxides. Dopants are driven into the substrate and base portions of the fins by annealing. The punch through stop layer includes a p-type region and an n-type region, both of which may extend substantially equal distances into the semiconductor fins.
Abstract:
A method of fabricating a semiconductor device where: (i) the fins are formed over a porous semiconductor material layer (for example, a silicon layer); and (ii) the porous semiconductor layer is then oxidized to form an insulator layer (for example, a SiO2 buried oxide layer). The pores in the porous semiconductor layer facilitate reliable oxidation of the insulator layer by allowing penetration of gaseous oxygen (O2) throughout the layer as it is oxidized to form the insulator layer. In some of these embodiments, a thin non-porous semiconductor layer is located over the porous semiconductor layer (prior to its oxidation) to allow strained epitaxial growth of material to be used in making source regions and drain regions of the finished semiconductor device (for example, a FINFET).
Abstract:
A pulsed laser-initiated exfoliation method for patterning a Group III-nitride film on a growth substrate is provided. This method includes providing a Group III-nitride film a growth substrate, wherein a growth substrate/Group III-nitride film interface is present between the Group III-nitride film and the growth substrate. Next, a laser is selected that provides radiation at a wavelength at which the Group III-nitride film is transparent and the growth substrate is absorbing. The interface is then irradiated with pulsed laser radiation from the Group III-nitride film side of the growth substrate/Group III-nitride film interface to exfoliate a region of the Group III-nitride from the growth substrate. A method for transfer a Group-III nitride film from a growth substrate to a handle substrate is also provided.
Abstract:
A high order silane having a formula of SinH2n+2, in which n is an integer greater than 3, in combination with a germanium precursor gas is employed to deposit an epitaxial semiconductor alloy material including at least silicon and germanium on a single crystalline surface. The germanium precursor gas effectively reduces the gas phase reaction of the high order silane, thereby improving the thickness uniformity of the deposited epitaxial semiconductor alloy material. The combination of the high order silane and the germanium precursor gas provides a high deposition rate in the Frank-van der Merwe growth mode for deposition of a single crystalline semiconductor alloy material.
Abstract translation:使用与锗前体气体组合的具有式SinH2n + 2的其中n为大于3的整数的高级硅烷在单一结晶表面上沉积至少包含硅和锗的外延半导体合金材料。 锗前体气体有效地降低了高级硅烷的气相反应,从而提高了沉积的外延半导体合金材料的厚度均匀性。 高阶硅烷和锗前体气体的组合在用于沉积单晶半导体合金材料的Frank-van der Merwe生长模式中提供高沉积速率。
Abstract:
Heterojunction bipolar transistors are provided that include at least one contact (e.g., collector, emitter, and/or base) formed by a heterojunction between a crystalline semiconductor material and a doped non-crystalline semiconductor material layer. An interfacial intrinsic non-crystalline semiconductor material layer is present at the heterojunction between the crystalline semiconductor material and the doped non-crystalline semiconductor material layer. The presence of the interfacial intrinsic non-crystalline semiconductor material layer improves the surface passivation of the crystalline semiconductor material by reducing the interface defect density at the heterojunction.
Abstract:
A semiconductor structure including a (100) silicon substrate having a plurality openings located within the silicon substrate, wherein each opening exposes a surface of the silicon substrate having a (111) crystal plane. This structure further includes an epitaxial semiconductor material located on an uppermost surface of the (100) silicon substrate, and a gallium nitride material located adjacent to the surface of the silicon substrate having the (111) crystal plane and adjacent a portion of the epitaxial semiconductor material. The structure also includes at least one semiconductor device located upon and within the gallium nitride material and at least one other semiconductor device located upon and within the epitaxial semiconductor material.
Abstract:
A method of fabricating a semiconductor device where: (i) the fins are formed over a porous semiconductor material layer (for example, a silicon layer); and (ii) the porous semiconductor layer is then oxidized to form an insulator layer (for example, a SiO2 buried oxide layer). The pores in the porous semiconductor layer facilitate reliable oxidation of the insulator layer by allowing penetration of gaseous oxygen (O2) throughout the layer as it is oxidized to form the insulator layer. In some of these embodiments, a thin non-porous semiconductor layer is located over the porous semiconductor layer (prior to its oxidation) to allow strained epitaxial growth of material to be used in making source regions and drain regions of the finished semiconductor device (for example, a FINFET).
Abstract:
A punch through stop layer is formed in a bulk FinFET structure using doped oxides. Dopants are driven into the substrate and base portions of the fins by annealing. The punch through stop layer includes a p-type region and an n-type region, both of which may extend substantially equal distances into the semiconductor fins.
Abstract:
A method for forming a device with a multi-tiered contact structure includes forming first contacts in via holes down to a first level, forming a dielectric capping layer over exposed portions of the first contacts and forming a dielectric layer over the capping layer. Via holes are opened in the dielectric layer down to the capping layer. Holes are opened in the capping layer through the via holes to expose the first contacts. Contact connectors and second contacts are formed in the via holes such that the first and second contacts are connected through the capping layer by the contact connectors to form multi-tiered contacts.