摘要:
A GaN substrate having a large diameter of two inches or more by which a semiconductor device such as a light emitting element with improved characteristics such as luminance efficiency, an operating life and the like can be obtained at low cost industrially, a substrate having an epitaxial layer formed on the GaN substrate, a semiconductor device, and a method of manufacturing the GaN substrate are provided. A GaN substrate has a main surface and contains a low-defect crystal region and a defect concentrated region adjacent to low-defect crystal region. Low-defect crystal region and defect concentrated region extend from the main surface to a back surface positioned on the opposite side of the main surface. A plane direction [0001] is inclined in an off-angle direction with respect to a normal vector of the main surface.
摘要:
A GaN substrate having a large diameter of two inches or more by which a semiconductor device such as a light emitting element with improved characteristics such as luminance efficiency, an operating life and the like can be obtained at low cost industrially, a substrate having an epitaxial layer formed on the GaN substrate, a semiconductor device, and a method of manufacturing the GaN substrate are provided. A GaN substrate has a main surface and contains a low-defect crystal region and a defect concentrated region adjacent to low-defect crystal region. Low-defect crystal region and defect concentrated region extend from the main surface to a back surface positioned on the opposite side of the main surface. A plane direction [0001] is inclined in an off-angle direction with respect to a normal vector of the main surface.
摘要:
Affords a GaN substrate from which enhanced-emission-efficiency light-emitting and like semiconductor devices can be produced, an epi-substrate in which an epitaxial layer has been formed on the GaN substrate principal surface, a semiconductor device, and a method of manufacturing the GaN substrate. The GaN substrate is a substrate having a principal surface with respect to whose normal vector the [0001] plane orientation is inclined in two different off-axis directions.
摘要:
An active layer 17 is provided so as to emit light having a light emission wavelength in the range of 440 to 550 nm. A first conduction type gallium nitride-based semiconductor region 13, the active layer 17, and a second conduction type gallium nitride-based semiconductor region 15 are disposed in a predetermined axis Ax direction. The active layer 17 includes a well layer composed of hexagonal InXGa1-XN (0.16≦X≦0.35, X: strained composition), and the indium composition X is represented by a strained composition. The a-plane of the hexagonal InXGa1-XN is aligned in the predetermined axis Ax direction. The thickness of the well layer is in the range of more than 2.5 nm to 10 nm. When the thickness of the well layer is set to 2.5 nm or more, a light emitting device having a light emission wavelength of 440 nm or more can be formed.
摘要:
An active layer 17 is provided so as to emit light having a light emission wavelength in the range of 440 to 550 nm. A first conduction type gallium nitride-based semiconductor region 13, the active layer 17, and a second conduction type gallium nitride-based semiconductor region 15 are disposed in a predetermined axis Ax direction. The active layer 17 includes a well layer composed of hexagonal InXGa1-XN (0.16≦X≦0.35, X: strained composition), and the indium composition X is represented by a strained composition. The a-plane of the hexagonal InXGa1-XN is aligned in the predetermined axis Ax direction. The thickness of the well layer is in the range of more than 2.5 nm to 10 nm. When the thickness of the well layer is set to 2.5 nm or more, a light emitting device having a light emission wavelength of 440 nm or more can be formed.
摘要:
An active layer (17) is provided so as to emit light having an emission wavelength in the 440 nm to 550 nm band. A first-conductivity-type gallium nitride semiconductor region (13), the active layer (17), and a second-conductivity-type gallium nitride semiconductor region (15) are arranged along a predetermined axis (Ax). The active layer (17) includes a well layer composed of hexagonal InxGa1-xN (0.16≦x≦0.4, x: strained composition), with the indium fraction x represented by the strained composition. The m-plane of the hexagonal InxGa1-xN is oriented along the predetermined axis (Ax). The well-layer thickness is between greater than 3 nm and less than or equal to 20 nm. Having the well-layer thickness be over 3 nm makes it possible to fabricate light-emitting devices having an emission wavelength of over 440 nm.
摘要翻译:提供有源层(17)以发射具有440nm至550nm波段的发射波长的光。 第一导电型氮化镓半导体区域(13),有源层(17)和第二导电型氮化镓半导体区域(15)沿预定轴线(Ax)布置。 活性层(17)包括由六方晶系In x Ga 1-x N(0.16 <= x <= 0.4,x:应变组成)构成的阱层,其中铟组分x由应变组合物表示。 六边形In x Ga 1-x N的m面沿预定轴线(Ax)取向。 阱层厚度大于3nm且小于或等于20nm。 具有超过3nm的阱层厚度使得可以制造发射波长超过440nm的发光器件。
摘要:
A gallium nitride-based semiconductor optical device is provided that includes an indium-containing gallium nitride-based semiconductor layer that exhibit low piezoelectric effect and high crystal quality. The gallium nitride-based semiconductor optical device 11a includes a GaN support base 13, a GaN-based semiconductor region 15, and well layers 19. A primary surface 13a tilts from a surface orthogonal to a reference axis that extends in a direction from one crystal axis of the m-axis and the a-axis of GaN toward the other crystal axis. The tilt angle AOFF is 0.05 degree or more to less than 15 degrees. The angle AOFF is equal to the angle defined by a vector VM and a vector VN. The inclination of the primary surface is shown by a typical m-plane SM and m-axis vector VM. The GaN-based semiconductor region 15 is provided on the primary surface 13a. In the well layers 19 in an active layer 17, both the m-plane and the a-plane of the well layers 19 tilt from a normal axis AN of the primary surface 13a. The indium content of the well layers 19 is 0.1 or more.
摘要:
Quality of one-surface planar processed group 3 nitride wafers depends upon a direction of pasting of wafers on a polishing plate. Low surface roughness and high yield are obtained by pasting a plurality of group 3 nitride as-grown wafers on a polishing plate with OFs or notches facing forward (f), backward (b) or inward (u) with thermoplastic wax having a thickness of 10 μm or less, grinding the as-grown wafers, lapping the ground wafers, polishing the lapped wafers into mirror wafers with a bevel of a horizontal width of 200 μm or less and a vertical depth of 100 μm or less.
摘要:
A nitride crystal is characterized in that, in connection with plane spacing of arbitrary specific parallel crystal lattice planes of the nitride crystal obtained from X-ray diffraction measurement performed with variation of X-ray penetration depth from a surface of the crystal while X-ray diffraction conditions of the specific parallel crystal lattice planes are satisfied, a uniform distortion at a surface layer of the crystal represented by a value of |d1−d2|/d2 obtained from the plane spacing d1 at the X-ray penetration depth of 0.3 μm and the plane spacing d2 at the X-ray penetration depth of 5 μm is equal to or lower than 2.1×10−3. The above configuration provides the nitride crystal having a crystal surface layer that is evaluated directly and reliably without breaking the crystal so that it can be used in a preferred fashion as a substrate for a semiconductor device as well as the nitride crystal substrate, an epilayer-containing nitride crystal substrate, a semiconductor device and a method of manufacturing the same.
摘要:
A nitride crystal is characterized in that, in connection with plane spacing of arbitrary specific parallel crystal lattice planes of the nitride crystal obtained from X-ray diffraction measurement performed with variation of X-ray penetration depth from a surface of the crystal while X-ray diffraction conditions of the specific parallel crystal lattice planes are satisfied, a uniform distortion at a surface layer of the crystal represented by a value of |d1−d2|/d2 obtained from the plane spacing d1 at the X-ray penetration depth of 0.3 μm and the plane spacing d2 at the X-ray penetration depth of 5 μm is equal to or lower than 2.1×10−3. The above configuration provides the nitride crystal having a crystal surface layer that is evaluated directly and reliably without breaking the crystal so that it can be used in a preferred fashion as a substrate for a semiconductor device as well as the nitride crystal substrate, an epilayer-containing nitride crystal substrate, a semiconductor device and a method of manufacturing the same.