Abstract:
A light emitting device including a light emitting element, a light transmissive member, a light guide member, and a light reflective member. The light transmissive member is disposed on an upper surface of the light emitting element, and has a lower surface including a first region facing the light emitting element and a second region positioned outside of the first region. The light guide member covers a lateral surface of the light emitting element and the second region of the lower surface of the light transmissive member. The light reflective member covers the light emitting element, an upper surface of the light transmissive member and the light guide member. One of lateral surfaces of the light transmissive member is exposed from the light reflective member.
Abstract:
A lighting device includes a light-emitting component including at least one light-emitting element mounted on a base, a light guide plate guiding light emitted from the light-emitting element, a wavelength conversion member partially covering the light guide plate, and a first reflective member covering the wavelength conversion member. The light guide plate comprises two main surfaces, which include a light-extraction surface allowing light emitted from the light-emitting element to exit and a rear surface opposite to the light-extraction surface. One of two main surfaces comprises at least one recess formed in an edge region thereof. The other main surface of the light guide plate includes a part covered by the wavelength conversion member and a part exposed from the wavelength conversion member. The light-emitting element is accommodated in the recess such that a light-emitting surface of the light-emitting element faces the wavelength conversion member.
Abstract:
A wave-length conversion inorganic member can includes a base body and an inorganic particle layer on the base body. The inorganic particle layer can include particles of an inorganic wave-length conversion substance which is configured to absorb light of a first wave-length and to emit light of a second wave-length different from the first wave-length. The inorganic particle layer can include an agglomerate of a plurality of the particles. Each of the plurality of the particles are in contact with at least one of the other particles or the base body. A cover layer comprises an inorganic material, and the cover layer continuously covers a surface of the base body and surfaces of the particles. The inorganic particle layer has an interstice enclosed by the particles, or by the particles and one of the base body and the cover layer.
Abstract:
A light-emitting apparatus has a light-emitting device and a supporting board. The light-emitting device has a pair of n-electrodes with a p-electrode therebetween, on the same plane. The supporting board includes an insulating substrate on which positive and negative electrodes are formed, opposing to the p- and n-electrodes of the light-emitting device, respectively. Bonding members bond the p- and n-electrodes with the positive and negative electrodes, respectively. The positive electrode on the supporting board is formed within the width region of the p-electrode and narrower in width than the width of the p-electrode, in a cross-section along a line extending through the pair of n-electrodes. The negative electrodes oppose to the n-electrodes, respectively, with the same widths, or with that side face of each of the negative electrodes which faces the positive electrode being retracted outwardly from that side face of each of the n-electrodes which faces the p-electrode.
Abstract:
A method of manufacturing a light emitting module according to the present disclosure includes: preparing a light guide plate that comprises a first main surface serving as a light-emitting surface and a second main surface opposite to the first main surface; respectively providing light emitting elements on the second main surface so as to correspond to each of a plurality of optically functional portions provided on the first main surface of the light guide plate; and forming wires electrically connecting the plurality of light emitting elements.
Abstract:
A composite board is provided with a board and a covering member. The board includes a base made of ceramics, first wiring provided on an upper surface of the base, and second wiring provided on a lower surface of the base and electrically connected to the first wiring. The covering member covers the base such that the first wiring and the second wiring are exposed.
Abstract:
A wave-length conversion inorganic member can includes a base body and an inorganic particle layer on the base body. The inorganic particle layer can include particles of an inorganic wave-length conversion substance which is configured to absorb light of a first wave-length and to emit light of a second wave-length different from the first wave-length. The inorganic particle layer can include an agglomerate of a plurality of the particles. Each of the plurality of the particles are in contact with at least one of the other particles or the base body. A cover layer comprises an inorganic material, and the cover layer continuously covers a surface of the base body and surfaces of the particles. The inorganic particle layer has an interstice enclosed by the particles, or by the particles and one of the base body and the cover layer.
Abstract:
A light-emitting apparatus has a light-emitting device and a supporting board. The light-emitting device has a pair of n-electrodes with a p-electrode therebetween, on the same plane. The supporting board includes an insulating substrate on which positive and negative electrodes are formed, opposing to the p- and n-electrodes of the light-emitting device, respectively. Bonding members bond the p- and n-electrodes with the positive and negative electrodes, respectively. The positive electrode on the supporting board is formed within the width region of the p-electrode and narrower in width than the width of the p-electrode, in a cross-section along a line extending through the pair of n-electrodes. The negative electrodes oppose to the n-electrodes, respectively, with the same widths, or with that side face of each of the negative electrodes which faces the positive electrode being retracted outwardly from that side face of each of the n-electrodes which faces the p-electrode.
Abstract:
A method of manufacturing a covering member includes: providing a first light-reflective member comprising a through-hole, the through-hole having first and second openings; arranging a light-transmissive resin containing a wavelength-conversion material within the through-hole; distributing the wavelength-conversion material predominantly on a side of the first opening of the through-hole within the light-transmissive resin; and after the step of distributing the wavelength-conversion material, removing a portion of the light-transmissive resin from a side of the second opening of the through-hole.
Abstract:
A light emitting device includes: a light emitting element comprising: a semiconductor multilayer structure that has an electrode formation surface, a light-emitting surface opposite to the electrode formation surface, and side surfaces between the electrode formation surface and the light-emitting surface, and a pair of electrodes provided on the electrode formation surface; a covering member covering the side surfaces of the light emitting element; and an optical member disposed over the light-emitting surface of the light emitting element and an upper surface of the covering member, the optical member comprising: a light-reflective portion disposed above the light emitting element, and a light-transmissive portion disposed between the light-reflective portion and the covering member and forming a part of an outer side surface of the light emitting device.