Abstract:
The present disclosure provides a metal compound. The metal compound is represented by a formula (I): Cu2AαB2-αO4-β (I). A contains at least one element selected from the groups 6 and 8 of the periodic table. B contains at least one element selected from the group 13 of the periodic table, 0
Abstract:
A method for integrally molding a metal and a resin and a metal-resin composite structure obtainable by the same are provided. The method comprises forming a nanopore in a surface of a metal sheet; melting a thermoplastic resin on the surface of the metal sheet formed with the nanopore; and injection molding the thermoplastic resin onto the surface of the metal sheet. The thermoplastic resin is a mixture of a main resin and a polyolefin resin, the main resin is a mixture of polyphenylene oxide and a polyamide, and the polyolefin resin has a melting point of about 65° C. to about 105° C.
Abstract:
An electric heater, and an apparatus, a heating and air conditioning system and a vehicle, each comprising the electric heater, are provided. The electric heater comprises an outer frame; a heating core configured to connect to a power source and disposed within the outer frame; and a sealing-waterproof glue member disposed within the outer frame and configured to encase at least one end of the heating core. The heating core further comprises: a plurality of heat dissipating components and heating components arranged alternately, and each of the heat dissipating component is coupled with a heating component via a thermal conductor. Each of the heating components further comprises a core tube and a positive temperature coefficient thermistor disposed in the core tube.
Abstract:
A sealing assembly for a battery, a method of preparing the sealing assembly and a lithium ion battery are provided. The sealing assembly for a battery comprises: a ceramic ring (3) having a receiving hole (31), a metal ring (4) fitted over the ceramic ring (3) for sealing an open end of the battery, and a column (2) formed in the receiving hole (31) which comprises a metal-metal composite (21), wherein the metal-metal composite (21) comprises: a metal porous body, and a metal material filled in pores of the metal porous body.
Abstract:
An amorphous and a manufacturing method thereof are provided. The amorphous alloy may have a formula of ZraCubAlcMdNe, M is at least one selected from the group consisting of Ni, Fe, Co, Mn, Cr, Ti, Hf, Ta, Nb and rare earth elements; N is at least one selected from a group consisting of Ca, Mg, and C; 40≦a≦70, 15≦b≦35, 5≦c≦15, 5≦d≦15, 0≦e≦2, and a+b+c+d+e=100.
Abstract:
A sealing assembly, a method of preparing the sealing assembly and a battery are provided. The sealing assembly comprises a metal ring having a mounting hole therein; a ceramic ring having a connecting hole therein and disposed in the mounting hole; and a core column disposed in the connecting hole, wherein at least one of an inner circumferential wall surface of the metal ring, an outer circumferential wall surface of the ceramic ring, an inner circumferential wall surface of the ceramic ring and an outer circumferential wall surface of the core column is configured as an inclined surface, and an inclination angle of the inclined surface relative to a vertical plane is about 1 degree to about 45 degrees.
Abstract:
A sealing assembly for a battery, a method of preparing the sealing assembly and a lithium ion battery are provided. The sealing assembly for a battery comprises: a ceramic ring (3) having a receiving hole (31), a metal ring (4) fitted over the ceramic ring (3) for sealing an open end of the battery, and a column (2) formed in the receiving hole (31) which comprises a metal-metal composite (21), wherein the metal-metal composite (21) comprises: a metal porous body, and a metal material filled in pores of the metal porous body.
Abstract:
A method for integrally molding a metal and a resin and a metal-resin composite structure obtainable by the same are provided. The method comprises forming a nanopore in a surface of a metal sheet; melting a thermoplastic resin on the surface of the metal sheet formed with the nanopore; and injection molding the thermoplastic resin onto the surface of the metal sheet. The thermoplastic resin includes a mixture of a main resin and a polyolefin resin, the main resin is a polycarbonate, and the polyolefin resin has a melting point of about 65° C. to about 105° C.
Abstract:
A metal-resin composite and method for producing the same are provided. The method comprises: A) forming nanopores in at least a part of a surface of a metal sheet; and B) injection molding a thermoplastic resin directly on the surface of the metal sheet. The thermoplastic resin includes a main resin and a polyolefin resin. The main resin includes a mixture of polyphenylene ether and polyphenylene sulfide. And the polyolefin resin has a melting point of about 65° C. to about 105° C.
Abstract:
A sealing assembly, a method of preparing the sealing assembly and a battery are provided. The sealing assembly comprises a metal ring having a mounting hole therein; a ceramic ring having a connecting hole therein and disposed in the mounting hole; and a core column disposed in the connecting hole, wherein at least one of an inner circumferential wall surface of the metal ring, an outer circumferential wall surface of the ceramic ring, an inner circumferential wall surface of the ceramic ring and an outer circumferential wall surface of the core column is configured as an inclined surface, and an inclination angle of the inclined surface relative to a vertical plane is about 1 degree to about 45 degrees.