Abstract:
A thermoelectric energy harvesting device including a first thermal-coupling interface, a second thermal-coupling interface, and a membrane. The membrane arranged between the first thermal-coupling interface and the second thermal-coupling interface and connected to the first thermal-coupling interface by a supporting frame. A thermal bridge between the second thermal-coupling interface and a thermal-coupling portion of the membrane. A thermoelectric converter on the membrane configured to supply an electrical quantity as a function of a temperature difference between the thermal-coupling portion of the membrane and the supporting frame.
Abstract:
A thermoelectric energy harvesting device including a first thermal-coupling interface, a second thermal-coupling interface, and a membrane. The membrane arranged between the first thermal-coupling interface and the second thermal-coupling interface and connected to the first thermal-coupling interface by a supporting frame. A thermal bridge between the second thermal-coupling interface and a thermal-coupling portion of the membrane. A thermoelectric converter on the membrane configured to supply an electrical quantity as a function of a temperature difference between the thermal-coupling portion of the membrane and the supporting frame.
Abstract:
A power semiconductor device including a first and second die, each including a plurality of conductive contact regions and a passivation region including a number of projecting dielectric regions and a number of windows. Adjacent windows are separated by a corresponding projecting dielectric region with each conductive contact region arranged within a corresponding window. A package of the surface mount type houses the first and second dice. The package includes a first bottom insulation multilayer and a second bottom insulation multilayer carrying, respectively, the first and second dice. A covering metal layer is arranged on top of the first and second dice and includes projecting metal regions extending into the windows to couple electrically with corresponding conductive contact regions. The covering metal layer moreover forms a number of cavities, which are interposed between the projecting metal regions so as to overlie corresponding projecting dielectric regions.
Abstract:
An electronic device includes: a semiconductor body; a front metallization region; a top buffer region, arranged between the front metallization region and the semiconductor body; and a conductive wire, electrically connected to the front metallization region. The top buffer region is at least partially sintered.
Abstract:
An electronic device includes: a semiconductor body; a front metallization region; a top buffer region, arranged between the front metallization region and the semiconductor body; and a conductive wire, electrically connected to the front metallization region. The top buffer region is at least partially sintered.
Abstract:
A power semiconductor device including a first and second die, each including a plurality of conductive contact regions and a passivation region including a number of projecting dielectric regions and a number of windows. Adjacent windows are separated by a corresponding projecting dielectric region with each conductive contact region arranged within a corresponding window. A package of the surface mount type houses the first and second dice. The package includes a first bottom insulation multilayer and a second bottom insulation multilayer carrying, respectively, the first and second dice. A covering metal layer is arranged on top of the first and second dice and includes projecting metal regions extending into the windows to couple electrically with corresponding conductive contact regions. The covering metal layer moreover forms a number of cavities, which are interposed between the projecting metal regions so as to overlie corresponding projecting dielectric regions.
Abstract:
An electronic power module comprising a case that houses a stack, which includes: a first substrate of a DBC type or the like; a die, integrating an electronic component having one or more electrical-conduction terminals, mechanically and thermally coupled to the first substrate; and a second substrate, of a DBC type or the like, which extends over the first substrate and over the die and presents a conductive path facing the die. The die is mechanically and thermally coupled to the first substrate by a first coupling region of a sintered thermoconductive paste, and the one or more conduction terminals of the electronic component are mechanically, electrically, and thermally coupled to the conductive path of the second substrate by a second coupling region of sintered thermoconductive paste.
Abstract:
An electronic power module comprising a case that houses a stack, which includes: a first substrate of a DBC type or the like; a die, integrating an electronic component having one or more electrical-conduction terminals, mechanically and thermally coupled to the first substrate; and a second substrate, of a DBC type or the like, which extends over the first substrate and over the die and presents a conductive path facing the die. The die is mechanically and thermally coupled to the first substrate by a first coupling region of a sintered thermoconductive paste, and the one or more conduction terminals of the electronic component are mechanically, electrically, and thermally coupled to the conductive path of the second substrate by a second coupling region of sintered thermoconductive paste.
Abstract:
A method for making a set of electronic devices is proposed. The method comprises the steps of providing a support comprising a base plate of electrically conductive material, fixing a set of chips of semiconductor material onto respective portions of the base plate, each chip having a first main surface with at least one first conduction terminal and a second main surface opposite the first main surface with at least one second conduction terminal electrically connected to the base plate, fixing an insulating tape of electrically insulating material comprising a plurality of through-holes to the main surface of each chip, the insulating tape protruding from the chips over a further portion of the base plate being not covered by the chips, and forming at least one first electrical contact to each first terminal of the chips through a first set of the through-holes exposing at least in part said first terminal, and at least one second electrical contact to the base plate through a second set of the through-holes exposing at least in part the further portion of the base plate.
Abstract:
An electronic device includes at least one chip and an insulating body embedding the chip. The electronic device further includes a heat-sink in contact with the chip. The heat-sink includes a plate having a first thickness. A recess is provided in the plate that defines a central portion of the plate having a second thickness less than the first thickness. The chip is mounted to the central region of the heat-sink within the recess. The insulating body includes a surface, such as a mounting surface, including an opening exposing at least a portion of the heat-sink. The device may further include a reophore extending through a side surface of the insulating body, that reophore being in contact with the heat sink.