Abstract:
A method of fabricating a light emitting device package includes forming a plurality of semiconductor light emitting parts, each having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer on a growth substrate, forming a partition structure having a plurality of light emitting windows on the growth substrate, filling each of the plurality of light emitting windows with a resin having a phosphor, and forming a plurality of wavelength conversion parts by planarizing a surface of the resin.
Abstract:
A method of fabricating a light emitting device package includes forming a plurality of semiconductor light emitting parts, each having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer on a growth substrate, forming a partition structure having a plurality of light emitting windows on the growth substrate, filling each of the plurality of light emitting windows with a resin having a phosphor, and forming a plurality of wavelength conversion parts by planarizing a surface of the resin.
Abstract:
A light emitting device package may include: a light emitting structure including a plurality of light emitting regions configured to emit light, respectively; a plurality of light adjusting layers formed above the light emitting regions to change characteristics of the light emitted from the light emitting regions, respectively; a plurality of electrodes configured to control the light emitting regions to emit the light, respectively; and an isolation insulating layer disposed between the light emitting regions to insulate the light emitting regions from one another, the isolation insulating layer forming a continuous structure with respect to the light emitting regions.
Abstract:
A semiconductor light-emitting device includes a light-emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, and a magnetic layer on the light-emitting structure. The magnetic layer may have at least one magnetization direction that is parallel to an upper surface of the active layer. The magnetic layer may generate a magnetic field that is parallel to the upper surface of the active layer. The magnetic layer may include multiple structures that may have different magnetization directions. Multiple magnetic layers may be included on the light-emitting structure. A magnetic layer may be on a contact electrode. A magnetic layer may be isolated from a pad electrode.
Abstract:
A light emitting device package may include: a light emitting structure including a plurality of light emitting regions configured to emit light, respectively; a plurality of light adjusting layers formed above the light emitting regions to change characteristics of the light emitted from the light emitting regions, respectively; a plurality of electrodes configured to control the light emitting regions to emit the light, respectively; and an isolation insulating layer disposed between the light emitting regions to insulate the light emitting regions from one another, the isolation insulating layer forming a continuous structure with respect to the light emitting regions.
Abstract:
A light emitting device package includes a light emitting structure including a first light emitting cell, a second light emitting cell, and a third light emitting cell, each of the first to third light emitting cells including an active layer to emit light of a first wavelength in a first direction and being separated from each other in a second direction, orthogonal to the first direction, a first light adjusting portion including a first wavelength conversion layer in a first recess portion of the first light emitting cell, the first wavelength conversion layer to convert light of the first wavelength to light of a second wavelength, and a second light adjusting portion including a second wavelength conversion layer in a second recess portion of the second light emitting cell, the second wavelength conversion layer to convert light of the first wavelength to light of a third wavelength.
Abstract:
A light emitting device package includes a substrate for growth having a plurality of light-emitting windows, a plurality of semiconductor light-emitting units corresponding to the plurality of light-emitting windows, each semiconductor light-emitting unit having a first surface contacting the substrate for growth and a second surface opposite the first surface, and each semiconductor light-emitting unit having a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer stacked on each other, a plurality of wavelength conversion units respectively disposed inside the plurality of light-emitting windows, each wavelength conversion unit is configured to provide light having a wavelength different from light emitted by the respective semiconductor light-emitting unit, a metal support layer disposed on at least one surface of each of the plurality of semiconductor light-emitting units and having a lateral surface coplanar with a lateral surface of the substrate for growth, and an insulating layer disposed between each of the plurality of semiconductor light-emitting units and a respective metal support layer.
Abstract:
A semiconductor light emitting device includes a first conductive semiconductor layer, an active layer, a second conductive semiconductor layer, a first internal electrode, a second internal electrode, an insulating part, and first and second pad electrodes. The active layer is disposed on a first portion of the first conductive semiconductor layer, and has the second conductive layer disposed thereon. The first internal electrode is disposed on a second portion of the first conductive semiconductor layer separate from the first portion. The second internal electrode is disposed on the second conductive semiconductor layer. The insulating part is disposed between the first and second internal electrodes, and the first and second pad electrodes are disposed on the insulating part to connect to a respective one of the first and second internal electrodes.
Abstract:
A semiconductor light emitting device includes a plurality of light emitting cells including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer between the first and second conductivity type semiconductor layers, an insulating layer on the plurality of light emitting cells and having a first opening and a second opening defining a first contact region of the first conductivity type semiconductor layer and a second contact region of the second conductivity type semiconductor layer, respectively, in each of the plurality of light emitting cells, a connection electrode on the insulating layer and connecting the first contact region and the second contact region to electrically connect the plurality of light emitting cells to each other, a transparent support substrate on the insulating layer and the connection electrode, and a transparent bonding layer between the insulating layer and the transparent support substrate.
Abstract:
A method of manufacturing a nanostructure semiconductor light emitting device may includes preparing a mask layer by sequentially forming a first insulating layer and a second insulating layer on a base layer configured of a first conductivity-type semiconductor, forming a plurality of openings penetrating the mask layer, growing a plurality of nanorods in the plurality of openings, removing the second insulating layer, preparing a plurality of nanocores by re-growing the plurality of nanorods, and forming nanoscale light emitting structures by sequentially growing an active layer and a second conductivity-type semiconductor layer on surfaces of the plurality of nanocores. The plurality of openings may respectively include a mold region located in the second insulating layer, and the mold region includes at least one curved portion of which an inclination of a side surface varies according to proximity to the first insulating layer.