Abstract:
Disclosed is a method for removing, from a target substrate having an insulating film with a predetermined pattern formed thereon, a silicon-containing oxide film formed in a silicon portion at a bottom of the pattern. The method includes: forming a carbon-based protective film on the entire surface of the insulating film including the pattern by ALD using a carbon source gas; selectively removing the carbon-based protective film on an upper surface of the insulating film and on the bottom of the pattern by an anisotropic plasma processing; removing the silicon-containing oxide film formed on the bottom of the pattern by etching; and removing a remaining portion of the carbon-based protective film.
Abstract:
A Cu wiring forming method of forming Cu wiring that is to be arranged in contact with tungsten wiring, by filling Cu into a recess formed in a substrate, includes: removing a tungsten oxide formed on a surface of the tungsten wiring; forming a nitriding preventing film at least on the surface of the tungsten wiring in the recess; forming a barrier film that prevents diffusion of Cu, on a surface in the recess from above the nitriding preventing film; forming a liner film on the barrier film; and filling a Cu film on the liner film.
Abstract:
In a plasma processing method, plasma processing is performed in a state where the object is attracted and held on the electrostatic chuck by applying a first voltage as an application voltage thereto and a thermal conduction gas is supplied to a gap between the electrostatic chuck and the object. The application voltage is decreased while stopping the supply of the thermal conduction gas and exhausting the thermal conduction gas remaining between the electrostatic chuck and the object upon completion of the plasma processing. The object is separated from the electrostatic chuck by setting the application voltage to the electrostatic chuck to zero after the application voltage is decreased.
Abstract:
A method for forming a semiconductor device can include providing a substrate including a via in a dielectric layer, forming a ruthenium metal plug in the via, and at least part of the ruthenium metal plug can be formed directly on the dielectric layer in the via, forming a metal cap layer directly on the ruthenium metal plug, and forming a metallization layer, such as a copper-containing trench, over the ruthenium metal plug, such that the metal cap layer is between the metallization layer and the ruthenium metal plug, which can prevent intermixing of the ruthenium of the ruthenium metal plug with the metal or metals in the metallization layer.
Abstract:
Disclosed is a method for removing, from a processing target substrate having an insulating film with a predetermined pattern formed thereon, a silicon-containing oxide film formed in a silicon portion of a bottom of the pattern. The method includes: removing the silicon-containing oxide film formed on the bottom of the pattern by ionic anisotropic plasma etching using plasma of a carbon-based gas; removing a remaining portion of the silicon-containing oxide film after the anisotropic plasma etching, by chemical etching; and removing a residue remaining after the chemical etching.
Abstract:
Provided is a method of forming a copper (Cu) wiring in a recess formed to have a predetermined pattern in an insulating film formed on a surface of a substrate. The method includes: forming a barrier film at least on a surface of the recess, the barrier film serving as a barrier for blocking diffusion of Cu; forming a Ru film on the barrier film by Chemical Mechanical Deposition (CVD); forming a Cu alloy film on the Ru film by Physical Vapor Deposition (PVD) to bury the recess; forming a Cu wiring using the Cu alloy film buried in the recess; and forming a dielectric film on the Cu wiring.
Abstract:
A method of forming a copper wiring buried in a recess portion of a predetermined pattern formed in an interlayer insulation layer of a substrate is disclosed. The method includes: forming a manganese oxide film at least on a surface of the recess portion, the manganese oxide film serving as a self-aligned barrier film through reaction with the interlayer insulation layer; performing hydrogen radical treatment with respect to a surface of the manganese oxide film; placing a metal more active than ruthenium on the surface of the manganese oxide film after the hydrogen radical treatment; forming a ruthenium film on the surface where the metal more active than ruthenium is present; and forming a copper film on the ruthenium film by physical vapor deposition (PVD) to bury the copper film in the recess portion.
Abstract:
There is provided a substrate processing method which includes placing a substrate on a stage provided inside a processing container, and forming a ruthenium film on the substrate, wherein forming the ruthenium film includes repeating a cycle including: supplying a ruthenium-containing gas and a CO gas into the processing container; and stopping the supply of the ruthenium-containing gas and the CO gas into the processing container and exhausting a gas within the processing container.
Abstract:
A method of etching silicon oxide on a surface of a substrate is provided. The method comprises alternately repeating heating the substrate to a heating temperature of 60° C. or higher, supplying hydrogen fluoride gas and ammonia gas onto the substrate to react with the silicon oxide, and modifying the silicon oxide to obtain a reaction product, and removing at least a portion of the reaction product from the substrate while stopping the supply of the above gases and continuing to heat the substrate at the heating temperature; and when a process gas that is at least one of the hydrogen fluoride gas and the ammonia gas is supplied, while continuing to supply the process gas from an upstream side of a flow path, closing a valve disposed in the flow path to pressurize the process gas in the flow path, and then opening the valve.
Abstract:
Cu wiring fabrication method for fabricating Cu wiring with respect to substrate having interlayer dielectric film having trench formed thereon, includes: forming barrier film on surface of the trench; forming Ru film on surface of the barrier film by CVD; burying the trench by forming Cu film or Cu alloy film on the Ru film; forming Cu film or Cu alloy film at corners of bottom of the trench while re-sputtering the formed Cu film or Cu alloy film in a condition where first formed Cu film or Cu alloy film re-sputtered by an ion action of the plasma generation gas; and subsequently burying the Cu film or the Cu alloy film in the trench in condition where the Cu film or the Cu alloy film is formed on field portion of the substrate, and reflows in the trench by an ion action of the plasma generation gas.