摘要:
A light emitting element according to the present disclosure includes a first light reflecting layer 41, a laminated structure 20, and a second light reflecting layer 42 laminated to each other. The laminated structure 20 includes a first compound semiconductor layer 21, a light emitting layer 23, and a second compound semiconductor layer 22 laminated to each other from a side of the first light reflecting layer. Light from the laminated structure 20 is emitted to an outside via the first light reflecting layer 41 or the second light reflecting layer 42. The first light reflecting layer 41 has a structure in which at least two types of thin films 41A and 41B are alternately laminated to each other in plural numbers. A film thickness modulating layer 80 is provided between the laminated structure 20 and the first light reflecting layer 41.
摘要:
According to the present invention, a semiconductor device includes a substrate comprising a front end face, a rear end face and side faces, a plurality of semiconductor lasers provided on the substrate, a forward optical multiplexer to multiplex forward output light of the plurality of semiconductor lasers and output the multiplexed light to the front end face, a backward optical multiplexer to multiplex backward output light of the plurality of semiconductor lasers and output the multiplexed light to the rear end face and a plurality of backward waveguides connected to an output section of the backward optical multiplexer, wherein the plurality of backward waveguides includes a main waveguide disposed at a center of the output section and a plurality of lateral waveguides disposed on both sides of the main waveguide to bend toward the side faces and output light from the side faces diagonally to the side faces.
摘要:
A broad area laser diode is configured to include an anti-guiding layer located outside of the active region of the device. The anti-guiding layer is formed of a high refractive index material that serves to de-couple unwanted, higher-order lateral modes (attributed to thermal lensing problems) from the lower-order mode output beam of output signal from the laser diode. The anti-guiding layer is formed using a single epitaxial growth step either prior to or subsequent to the steps used to grow the epitaxial layers forming the laser diode itself, thus creating a structure that provides suppression of unwanted higher-order modes without requiring a modification of specific process steps used to fabricate the laser diode itself.
摘要:
A semiconductor laser includes: a stacked body having an active layer including a quantum well layer, the active layer having a cascade structure including a first region capable of emitting infrared laser light with a wavelength of not less than 12 μm and not more than 18 μm by an intersubband optical transition of the quantum well layer and a second region capable of relaxing energy of a carrier alternately stacked, the stacked body having a ridge waveguide and being capable of emitting the infrared laser light; and a dielectric layer provided so as to sandwich both sides of at least part of side surfaces of the stacked body, a wavelength at which a transmittance of the dielectric layer decreases to 50% being 16 μm or more, the dielectric layer having a refractive index lower than refractive indices of all layers constituting the active layer.
摘要:
A semiconductor laser includes: a stacked body having an active layer including a quantum well layer, the active layer having a cascade structure including a first region capable of emitting infrared laser light with a wavelength of not less than 12 μm and not more than 18 μm by an intersubband optical transition of the quantum well layer and a second region capable of relaxing energy of a carrier alternately stacked, the stacked body having a ridge waveguide and being capable of emitting the infrared laser light; and a dielectric layer provided so as to sandwich both sides of at least part of side surfaces of the stacked body, a wavelength at which a transmittance of the dielectric layer decreases to 50% being 16 μm or more, the dielectric layer having a refractive index lower than refractive indices of all layers constituting the active layer.
摘要:
According to an embodiment, a semiconductor light emitting device is configured to emit light by energy relaxation of an electron between subbands of a plurality of quantum wells. The device includes an active layer and at least a pair of cladding layers. The active layer is provided in a stripe shape extending in a direction parallel to an emission direction of the light, and includes the plurality of quantum wells; and the active layer emits the light with a wavelength of 10 μm or more. Each of the cladding layers is provided both on and under the active layer respectively and have a lower refractive index than the active layer. At least one portion of the cladding layers contains a material having a different lattice constant from the active layer and has a lower optical absorption at a wavelength of the light than the other portion.
摘要:
A semiconductor laser diode includes a substrate. A semiconductor layer sequence on the substrate has at least one active layer designed for generating laser light that is emitted along an emission direction during operation. At least one filter layer has a main extension plane that is parallel to a main extension plane of the active layer and that is designed to scatter and/or absorb light that propagates in the semiconductor layer sequence and/or the substrate in addition to the laser light.
摘要:
A laser diode includes: a first multilayer film reflecting mirror, an active layer, and a second multilayer film reflecting mirror in this order; and a first oxide narrowing layer and a second oxide narrowing layer. The first oxide narrowing layer is formed close to the active layer, in comparison with the second oxide narrowing layer, includes a first unoxidized region in a middle region in a plane, and includes a first oxidized region on a periphery of the first unoxidized region. The second oxide narrowing layer includes, in a region facing the first unoxidized region, a second unoxidized region having a diameter smaller than that of the first unoxidized region, includes a third unoxidized region in a region not facing the first unoxidized region, and includes a second oxidized region on a periphery of the second unoxidized region and the third unoxidized region.
摘要:
A surface emitting laser which is configured by laminating on a substrate a lower reflection mirror, an active layer, and an upper reflection mirror, which includes, in a light emitting section of the upper reflection mirror, a structure for controlling reflectance that is configured by a low reflectance region and a concave high reflectance region formed in the central portion of the low reflectance region, and which oscillates at a wavelength of λ, wherein the upper reflection mirror is configured by a multilayer film reflection mirror based on a laminated structure formed by laminating a plurality of layers, the multilayer film reflection mirror includes a phase adjusting layer which has an optical thickness in the range of λ/8 to 3λ/8 inclusive in a light emitting peripheral portion on the multilayer film reflection mirror, and an absorption layer causing band-to-band absorption is provided in the phase adjusting layer.
摘要:
Disclosed herein is a semiconductor laser including: a first clad layer of a first conduction type; an active layer over said first clad layer; a saturable absorbing layer over said active layer; and a second clad layer of a second conduction type over said saturable absorbing layer; at least said second clad layer being provided with a pair of grooves parallel to each other with a predetermined spacing therebetween so as to form a ridge stripe therebetween. In the semiconductor laser, the distance from bottom surfaces of said grooves to an upper surface of said active layer is not less than 105 nm, and the distance from said bottom surfaces of said grooves to an upper surface of said saturable absorbing layer is not more than 100 nm.