Abstract:
A substrate including strip conductors with a wiring pattern that connects contact areas to one another. The strip conductors have a small strip conductor width. The contact areas and/or the strip conductors form a narrow connection pitch and include electrically conductive carbon nanotubes.
Abstract:
A heat treatment method is provided for a panel. The panel includes a plastic housing composition, in which semiconductor chips are embedded by their rear sides and edge sides, and the top sides of the semiconductor chips form a coplanar area with the plastic housing composition. The panel is fixed by its underside on a holder, and a temperature gradient (ΔT) is then generated between top side and the underside of the panel. The temperature gradient (ΔT) is then maintained for at least one delimited or selected time period. The panel is then cooled to room temperature (TR).
Abstract translation:为面板提供热处理方法。 面板包括塑料外壳组合物,其中半导体芯片由其后侧和边缘侧嵌入,并且半导体芯片的顶侧与塑料外壳组合物形成共面区域。 面板通过其下侧固定在支架上,然后在面板的顶侧和底面之间产生温度梯度(DeltaT)。 然后将温度梯度(DeltaT)保持至少一个定界或选定的时间段。 然后将面板冷却至室温(T R R)。
Abstract:
A semiconductor module (1) has components (6) for microwave engineering in a plastic casing (7). The semiconductor module (1) has a principal surface (8) with an upper side (9) of a plastic package molding compound (10) and at least one active upper side (11) of a semiconductor chip (12). Disposed on the principal surface (8) is a multilayered conductor track structure (13) which alternately comprises structured metal layers (14, 15) and structured insulation layers (16, 17), where at least one of the insulation layers (16, 17) and/or the plastic package molding compound (10) has at least one microwave insulation region.
Abstract:
The invention relates to a module having a circuit carrier and having an electro-optical transducer mounted thereon for coupling in or out optical beams which are fed or conducted away via an optical fiber. The electro-optical transducer has an optical waveguide holder mounted onto a circuit carrier, the end side of which optical waveguide holder has an optoelectronic component having an optically active region, the optically active region being oriented to an optical waveguide receptacle of an optical waveguide holder.
Abstract:
An optoelectronic module and a connecting piece for the module with respect to an optical fiber and with respect to a circuit board can have a semiconductor chip in the form of an optical transmitter chip, which has a light-wave-emitting top side and has a rear side contact as a cathode on its rear side. Further semiconductor chips are embedded in a plastics composition with the optical transmitter chip in such a way that a coplanar overall top side is formed from the plastics composition and the active top side.
Abstract:
A component housing for surface mounting of a semiconductor component on a component-mounting surface of a printed circuit board. The component housing including a chip carrier made of an electrically insulating material and having an approximately planar chip carrier area, a semiconductor chip, preferably having an integrated electronic circuit, secured on the chip carrier area, and electrode terminals having a surface-mountable configuration. The electrode terminals penetrating through the chip carrier and electrically connected to the semiconductor chip. A distance between the component-mounting surface of the printed circuit board and outer delimiting areas of the chip carrier which face the component-mounting surface of the printed circuit board increases continuously from an edge region to a central region of the chip carrier.