摘要:
An example IC device formed using trim patterning as described herein may include a support structure, a first elongated structure (e.g., a first fin or nanoribbon) and a second elongated structure (e.g., a second fin or nanoribbon), proximate to an end of the first elongated structure. An angle between a projection of the first elongated structure on the support structure and an edge of the support structure may be between about 5 and 45 degrees, while an angle between a projection of the second elongated structure on the support structure and the edge of the support structure may be less than about 15 degrees.
摘要:
Material layer stack structures to provide a magnetic tunnel junction (MTJ) having improved perpendicular magnetic anisotropy (PMA) characteristics. In an embodiment, a free magnetic layer of the material layer stack is disposed between a tunnel barrier layer and a cap layer of magnesium oxide (Mg). The free magnetic layer includes a Cobalt-Iron-Boron (CoFeB) body substantially comprised of a combination of Cobalt atoms, Iron atoms and Boron atoms. A first Boron mass fraction of the CoFeB body is equal to or more than 25% (e.g., equal to or more than 27%) in a first region which adjoins an interface of the free magnetic layer with the tunnel barrier layer. In another embodiment, the first Boron mass fraction is more than a second Boron mass fraction in a second region of the CoFeB body which adjoins an interface of the free magnetic layer with the cap layer.
摘要:
Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
摘要:
Semiconductor devices with isolated body portions are described. For example, a semiconductor structure includes a semiconductor body disposed above a semiconductor substrate. The semiconductor body includes a channel region and a pair of source and drain regions on either side of the channel region. An isolation pedestal is disposed between the semiconductor body and the semiconductor substrate. A gate electrode stack at least partially surrounds a portion of the channel region of the semiconductor body.
摘要:
Gate contact structures disposed over active portions of gates and methods of forming such gate contact structures are described. For example, a semiconductor structure includes a substrate having an active region and an isolation region. A gate structure has a portion disposed above the active region and a portion disposed above the isolation region of the substrate. Source and drain regions are disposed in the active region of the substrate, on either side of the portion of the gate structure disposed above the active region. A gate contact structure is disposed on the portion of the gate structure disposed above the active region of the substrate.
摘要:
Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance. A second gate electrode stack completely surrounds the discrete channel region of the second nanowire.
摘要:
Techniques are disclosed for forming transistor devices having reduced parasitic contact resistance relative to conventional devices. The techniques can be implemented, for example, using a standard contact stack such as a series of metals on, for example, silicon or silicon germanium (SiGe) source/drain regions. In accordance with one example such embodiment, an intermediate boron doped germanium layer is provided between the source/drain and contact metals to significantly reduce contact resistance. Numerous transistor configurations and suitable fabrication processes will be apparent in light of this disclosure, including both planar and non-planar transistor structures (e.g., FinFETs), as well as strained and unstrained channel structures. Graded buffering can be used to reduce misfit dislocation. The techniques are particularly well-suited for implementing p-type devices, but can be used for n-type devices if so desired.
摘要:
A hard mask etch stop is formed on the top surface of tall fins to preserve the fin height and protect the top surface of the fin from damage during etching steps of the transistor fabrication process. In an embodiment, the hard mask etch stop is formed using a dual hard mask system, wherein a hard mask etch stop layer is formed over the surface of a substrate, and a second hard mask layer is used to pattern a fin with a hard mask etch stop layer on the top surface of the fin. The second hard mask layer is removed, while the hard mask etch stop layer remains to protect the top surface of the fin during subsequent fabrication steps.
摘要:
Semiconductor devices having three-dimensional bodies with modulated heights and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a first semiconductor body disposed above a substrate. The first semiconductor body has a first height and an uppermost surface with a first horizontal plane. The semiconductor structure also includes a second semiconductor device having a second semiconductor body disposed above the substrate. The second semiconductor body has a second height and an uppermost surface with a second horizontal plane. The first and second horizontal planes are co-planar and the first and second heights are different.
摘要:
Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance. A second gate electrode stack completely surrounds the discrete channel region of the second nanowire.