摘要:
An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises multiple zones such as a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
摘要:
An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
摘要:
The methods, apparatus and compositions disclosed herein concern the detection, identification and/or sequencing of biomolecules, such as nucleic acids or proteins. In certain embodiments of the invention, coded probes comprising a probe molecule attached to one or more nanobarcodes may be allowed to bind to one or more target molecules. After binding and separation from unbound coded probes, the bound coded probes may be aligned on a surface and analyzed by scanning probe microscopy. The nanobarcodes may be any molecule or complex that is distinguishable by SPM, such as carbon nanotubes, fullerenes, submicrometer metallic barcodes, nanoparticles or quantum dots. Where the probes are oligonucleotides, adjacent coded probes hybridized to a target nucleic acid may be ligated together before alignment and SPM analysis. Compositions comprising coded probes are also disclosed herein. Systems for biomolecule analysis may comprise a scanning probe microscopy (SPM) instrument and at least one coded probe attached to a surface.
摘要:
The presently claimed invention provides for novel methods and kits for analyzing a collection of target sequences in a nucleic acid sample. A sample is amplified under conditions that enrich for a subset of fragments that includes a collection of target sequences. The invention further provides for analysis of the above sample by hybridization to an array, which may be specifically designed to interrogate the collection of target sequences for particular characteristics, such as, for example, the presence or absence of one or more polymorphisms.
摘要:
The application relates to a device and method for performing analyte detection, especially biomolecule detection. The device and method combine photo-induced charge separation in label materials and field effect transistors as sensors, resulting in more sensitive, specific and/or selective detections of biomolecules in multiplex assays, such as immunoassays and DNA microarray assays. The embodiments of the invention also encompass a device and method that comprise an array of electrical sensors, such as field effect transistors, and binding complexes for simultaneous multiplex detection of analytes.
摘要:
Metallic nanoclusters capable of providing an enhanced Raman signal from an organic Raman-active molecule incorporated therein are provided. The nanoclusters may be further functionalized, for example, with coatings and layers, such as adsorption layers, metal coatings, silica coatings, probes, and organic layers. The nanoclusters are generally referred to as COINs (composite organic inorganic nanoparticles) and are capable of acting as sensitive reporters for analyte detection. A variety of organic Raman-active compounds and mixtures of compounds can be incorporated into the nanocluster.
摘要:
The present methods, compositions and systems are concerned with biomolecule 130 detection, identification and/or quantification by rolling circle amplification (RCA) and Raman detection. In particular embodiments of the invention, the RCA is exponential RCA or linear RCA. In some embodiments of the invention, the Raman detection is SERS or SERRS. The circular DNA template 150, 210, 310 to be amplified may comprise one or more polythymidine 320 residues, resulting in amplification products 170, 230, 250, 330, 410 containing multiple polyadenylate 340, 420 residues. The polyadenylates 340, 420 may be directly detected by Raman detection. Alternatively, one or more Raman labels may be incorporated into the amplification products 170, 230, 250, 330, 410 to facilitate Raman detection. Because of the amplification produced by LRCA or ERCA and the enhanced Raman signal produced by multiple polyadenylates 340, 420 and/or Raman labels, detection of single copy biomolecules 130 is feasible using the disclosed methods, compositions and/or systems.
摘要:
The present methods and apparatus concern the detection and/or identification of target analytes using probe molecules. In various embodiments of the invention, the probes or analytes are attached to one or more cantilevers. Binding of a probe to an analyte results in deflection of the cantilever, detected by a detection unit. A counterbalancing force may be applied to restore the cantilever to its original position. The counterbalancing force may be magnetic, electrical or radiative. The detection unit and the mechanism generating the counterbalancing force may be operably coupled to an information processing and control unit, such as a computer. The computer may regulate a feedback loop that maintains the cantilever in a fixed position by balancing the deflecting force and the counterbalancing force. The concentration of analytes in a sample may be determined from the magnitude of the counterbalancing force required to maintain the cantilever in a fixed position.
摘要:
Embodiments of the present invention provide devices methods for sequencing DNA using arrays of reaction cavities containing sensors to monitor changes in solutions contained in the reaction cavities. Additional embodiments provide devices and methods for sequencing DNA using arrays of reaction cavities that allow for optical monitoring of solutions in the reaction cavities. Test and fill reaction schemes are disclosed that allow DNA to be sequenced. By sequencing DNA using parallel reactions contained in large arrays, DNA can be rapidly sequenced.
摘要:
Briefly, in accordance with one embodiment of the invention, the intensity of the signals from surface enhanced Raman spectroscopy may be increased by using lithium chloride as an enhancer to activate a metallic structure used for surface enhanced Raman spectroscopy. The increased signal intensity may allow surface enhanced Raman spectroscopy to be utilized to detect individual analytes such as nucleotides, for example in DNA sequencing without requiring a dye or radioactive label.