摘要:
Provided herein are methods and compositions for stabilization of active agents. The active agents are distributed, mixed or embedded in a silk fibroin matrix, thereby retaining the bioactivity of the active agents upon storage and/or transportation. In some embodiments, the storage-stable vaccine-silk compositions are also provided herein.
摘要:
The present disclosure provides certain silk-fibroin compositions with particular characteristics and/or properties. In some embodiments, the disclosure provides low molecular weight compositions. In some embodiments, the disclosure provides silk fibroin compositions that comprise an active (e.g., a biological) agent or component. In some embodiments, the disclosure provides low molecular weight silk fibroin compositions that comprise an active (e.g., a biological) agent or component. In some embodiments, an active agent is stabilized in a silk composition, e.g., for a period of time and/or against certain conditions or events. In some embodiments, a component present in a silk fibroin composition may be subject to analysis and/or characterization. In some embodiments, a component present in a silk fibroin composition may be recovered from the composition.
摘要:
The present invention provides, among other things, a elastomeric biomaterial having enzymatically cross-linked amino acid phenolic side chains to generate highly elastic hydrogels. Materials are characterized by tunable mechanical properties, gelation kinetics and swelling properties of these new protein polymers. Provided materials are support encapsulation of cells. Methods of making and using of provided particles are also disclosed.
摘要:
A bioresorbable drug-eluting biopolymer suture-free blood vessel anastomosis devices can be deployed to join two blood vessels and resorbed by the body over a predetermined time period after the blood vessel has become joined. The anastomosis device can include a hollow tube that is inserted interconnect the two vessels to be jointed. A non-piercing suture is wrapped around the vessel to secure the anastomosis. The anastomosis device can include hollow tube that extends along an axis from a first end to a second end. The ends can be fitted with elements that facilitate mechanical attachment of the vessel to the anastomosis device and provide for a secure seal.
摘要:
This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
摘要:
The invention provides a method for the controlled assembly of layered silk fibroin coatings using aqueous silk fibroin material. The methods described herein can be used to coat substrates of any material, shape, or size. Importantly, the described methods enable control of the biomaterial surface Chemistry, thickness, morphology and structure using layered thin film coatings, or bulk coatings. Furthermore, the methods can be performed in all water and do not require intensive chemical processing enabling controlled entrapment of labile molecules such as, drugs, cytokines, and even cells or viruses to generate functional coatings that can be used in a variety of applications.
摘要:
The inventions provided herein generally relate to compositions and methods for controlling response of immune cells to at least one stimulus or condition (e.g., but not limited to, tissue damage, an implantable device and/or a cytokine) in vitro or in vivo. The compositions described herein comprise a biomaterial (e.g., a silk fibroin-based matrix) comprising at least one immune cell-modulating agent in an effective amount sufficient to selectively alter activation state of at least one type of immune cells (e.g., but not limited to macrophages and dendritic cells). Accordingly, in some embodiments, the compositions and methods described herein can be used to selectively skew macrophages to M1 phenotype and/or M2 phenotype and thereby control the inflammatory and/or regenerative responses of the macrophages, e.g., to repair and/or regenerate a target tissue.
摘要:
The claimed invention provides a fusion polypeptide comprising a fibrous protein domain and a mineralization domain. The fusion is used to form an organic-inorganic composite. These organic-inorganic composites can be constructed from the nano- to the macro-scale depending on the size of the fibrous protein fusion domain used. In one embodiment, the composites can also be loaded with other compounds (e.g., dyes, drugs, enzymes) depending on the goal for the materials, to further enhance function. This can be achieved during assembly of the material or during the mineralization step in materials formation.
摘要:
The inventions provided herein relate to compositions, methods, delivery devices and kits for repairing or augmenting a tissue in a subject. The compositions described herein are injectable such that they can be placed in a tissue to be treated with a minimally-invasive procedure (e.g., by injection) and/or be molded flexibly into a tissue void of any shape and/or size. In some embodiments, the composition described herein comprises a plurality of silk fibroin particles, which can retain their original volume within the tissue for a period of time. The compositions can be used as a filler to replace a tissue void, e.g., for tissue repair and/or augmentation, or as a scaffold to support tissue regeneration and/or reconstruction. In some embodiments, the compositions described herein can be used for soft tissue repair or augmentation.
摘要:
The present invention provides for concentrated aqueous silk fibroin solutions and an all-aqueous mode for preparation of concentrated aqueous fibroin solutions that avoids the use of organic solvents, direct additives, or harsh chemicals. The invention further provides for the use of these solutions in production of materials, e.g., fibers, films, foams, meshes, scaffolds and hydrogels.