摘要:
There is a problem that contact resistance increases due to formation of an oxide film on a contact interface or biting of abrasion powder caused by micro-sliding when a contact connecting portion of a connection terminal including non-noble metal members is exposed to high temperature environment or a repetitious temperature cycle. An object of the present invention is to provide an in-vehicle electronic module that has connection reliability equivalent to that of the conventional in-vehicle electronic module even when being placed in the environment of an engine compartment and can achieve cost reduction by reducing the number of parts and assembly steps. The electronic module includes a mounting board having a circuit board on which an electronic component is mounted, and a case member for accommodating and protecting the mounting board from surrounding environment, The electronic module has a connection structure in which a portion of the circuit board is protruded to the outside through an opening of the case and inserts a board terminal into an external female connector to obtain electrical continuity, and a portion of the case member forms a connector housing that receives the female connector and isolates a space in which the board terminal is present from surrounding environment and an insulating resin member for fixing the circuit board in the case is integrally molded or joined with the circuit board.
摘要:
A bonding member that includes a plating film containing a Cu—Ni alloy as its main constituent. In this plating film, the Cu mass ratio Cu/(Cu+Ni) is increased and decreased between 0.7 and 0.97 in the film thickness direction. In addition, the amplitude between the increase and decrease in the Cu mass ratio is larger than 0.1. Therefore, when the plating film containing the Cu—Ni alloy as its main constituent and Sn-based solder material or the like are joined by soldering, an intermetallic compound layer with a high melting point is formed. In addition, the plating film has a layer with a slow reaction rate, and thus can slow the reaction rate of alloying reaction between the Cu—Ni alloy and a Sn-based metal.
摘要:
In solder paste of the present invention, a first metal powder, a second metal powder, and a third metal powder are dispersed in a flux or a thermosetting resin. The first metal powder includes a first metal material such as Cu, Ag, Au, or Pd that serves as a base metal. A second metal material such as Sn or In that has a melting point lower than that of the first metal material is coated on the surface of the first metal material. The second metal powder is made of a metal material such as Sn or In that has a melting point lower than that of the first metal material. The third metal powder such as a Cu, Ag, Au or Pd powder has an average particle diameter smaller than that of the first metal material and can form compounds with the second metal material and the second metal powder. Accordingly, the likelihood of unreacted components remaining after a heat treatment can be suppressed, and even when a reflow treatment is repeated a plurality of times, a decrease in the bonding strength of solder bonding can be prevented.
摘要:
The invention relates to a mixture for applying a thin polymer, especially less than 6 ?m, non-corrosive, electroconductive or semiconductive coating which can be shaped in a low-abrasive manner, to a base. Said mixture contains A) electroconductive and/or semiconductive elements/compounds selected from the group of a) electroconductive and/or semiconductive particles having a particle size distribution with a transfer value d80 which is less than or equal to 6 ?m, b) electroconductive and/or semi-conductive polymer compounds, and c) electroconductive and/or semiconductive compounds containing amine and/or ammonium, B) at least one binding agent optionally containing reactive thinning agents, C) at least one crosslinking agent and/or at least one photoinitiator, D) optionally at least one constituent selected from d) post-crosslinking compounds, e) additives, f) anticorrosion pigments, and g) non-particulate corrosion inhibitors, and optionally E) an organic solvent and/or water, the sum of all of the conductive and/or semiconductive elements/compounds A) amounting to between 0.5 and 70 wt. %, and the particle content a) amounting to between 0 and 60 wt. %. The invention also relates to a method for producing a non-corrosive, viscoplastic coating on a base, said coating containing polymer and inorganic particles, and to an electroconductive or semiconductive coating containing polymer and inorganic particles.
摘要:
The present invention provides a weldable, coated metal substrate having a pretreatment coating including a reaction product of at least one epoxy-functional material and at least one phosphorus-containing material or amine-containing material and a weldable coating having an electroconductive pigment and a binder deposited thereon.
摘要:
A curable coating composition is disclosed comprising a resinous binder comprising (a) a reaction product of an epoxy-containing polymer with a compound containing phosphorus acid groups, the reaction product having reactive functional groups, and (b) a curing agent having functional groups reactive with the functional groups of (a). An electroconductive pigment is dispersed in (a) such that the weight ratio of the electroconductive pigment to (a) plus (b) is within the range of 0.5 to 9.0:1. When the curable coating composition is deposited and cured on a metal substrate, the cured coating is weldable.
摘要:
A weldable coating composition is disclosed. The composition comprises a binder in which is dispersed a conductive pigment and a source of silicon. Enhanced corrosion protection is offered, without sacrificing weldability of the coating layer. The composition is applied to and cured on a metal substrate.
摘要:
A method for protecting tin oxide coated solder surfaces against further oxidation and a method for fluxless solder joining of such surfaces is provided.
摘要:
The present invention provides a weldable, coated metal substrate having a pretreatment coating including a reaction product of at least one epoxy-functional material and at least one phosphorus-containing material or amine-containing material and a weldable coating having an electroconductive pigment and a binder deposited thereon.