Abstract:
A traffic lane acquisition section obtains traffic lane information that includes the road shape of a host-vehicle lane, from road map information, based on the detected position of a host vehicle, expressed by position information obtained by a host vehicle position acquisition section. Based on detected positions of traffic lane identification-use objects, contained in object information obtained by an object acquisition section, a lane boundary line identification section identifies lane boundary lines. A region estimation section estimates a displacement-possible region of the host-vehicle lane ahead of the host vehicle, based on the lane boundary lines that are obtained by the lane boundary line identification section. If a predetermined lane reliability condition is not satisfied for the lane boundary lines, then the accuracy of estimating the displacement-possible region is updated by using the road shape of the host-vehicle lane from the traffic lane information obtained by the traffic lane acquisition section.
Abstract:
A vehicle control apparatus includes: a first detection part that detects a peripheral vehicle which is traveling around a vehicle; a control plan generation part that is configured to generate a control plan of the vehicle according to the peripheral vehicle; and a travel control part that is configured to control acceleration, deceleration, or steering of the vehicle according to the control plan, wherein the control plan generation part generates the control plan of the vehicle according to a peripheral vehicle that satisfies a predetermined condition among one or more peripheral vehicles that are detected by the first detection part, and wherein when it is not possible to detect the peripheral vehicle that satisfies the predetermined condition, the control plan generation part is configured to set a virtual vehicle which virtually simulates the peripheral vehicle that satisfies the predetermined condition and generate the control plan of the vehicle.
Abstract:
A vehicular control system includes a plurality of cameras that capture image data, at least one radar sensor that senses radar data and a control that processes image data captured by the cameras and sensed radar data. The control, responsive to processing of captured image data, detects lane markers and/or road edges and determines curvature of the road being traveled by the equipped vehicle. The control processes captured image data and sensed radar data to detect vehicles. The control, based on processing of captured image data and/or sensed radar data, detects another vehicle and determines distance from the equipped vehicle to the detected other vehicle. The control may, based at least in part on the detection of another vehicle and the determination of distance from the equipped vehicle to the detected other vehicle, determine whether it is safe for the equipped vehicle to execute a lane change maneuver.
Abstract:
A driver assistance system for a vehicle includes a forward-viewing camera disposed in a windshield electronics module attached at a windshield of the vehicle and viewing through the windshield. A control includes a processor that, responsive to processing of captured image data, detects lane markers on a road being traveled by the vehicle. The processor determines curvature of the road being traveled by the vehicle and detects another vehicle that is present exterior of the equipped vehicle and determines that the detected other vehicle is in the same traffic lane as the equipped vehicle or is in an adjacent traffic lane. The processor processes captured image data to determine distance from the equipped vehicle to the detected other vehicle that is present exterior of the equipped vehicle and within the exterior field of view of the forward-viewing camera. The processor processes captured image data for vehicle speed control.
Abstract:
A driver assistance system for a vehicle includes a forward facing camera and a control comprising an image processor that processes image data captured by the forward facing camera. The control receives vehicle data relating to the vehicle, including vehicle speed and vehicle steering angle, via a vehicle bus of the vehicle. Via processing by the image processor of image data captured by the forward facing camera, the control is operable to detect a road marking on the road being traveled by the vehicle and to the left of the vehicle. Responsive at least in part to processing of captured image data by the image processor, the control determines a driving condition of the vehicle, such as the type of lane markers present ahead of the vehicle, a traffic condition at or ahead of the vehicle, and/or a hazardous condition at or ahead of the vehicle.
Abstract:
A driver assistance apparatus and a vehicle including the same are disclosed. The driver assistance apparatus includes a stereo camera, a sensor unit to sense a travel state of a vehicle, and a processor to diagnose a part of the vehicle based on stereo images received from the stereo camera and vehicle travel state information sensed by the sensor unit. Consequently, it is possible to easily diagnose parts of the vehicle that may be in need of repair or replacement.
Abstract:
The driving support device includes: a recognition section configured to recognize each positions of a specific object and a road marking with reference to peripheral information of a own vehicle acquired by a sensor section configured to acquire the peripheral information; and a control section configured to perform different controls on the own vehicle, with reference to recognition results of the recognition section, depending on whether the specific object is present in a first state or a second state, the first state being a state where the specific object is present in a region more outside than a traveling lane with respect to an imaginary line that extends along a traveling direction of the own vehicle, the second state being a state where the specific object is present in a region on a more central side of the traveling lane with respect to the imaginary line.
Abstract:
A driver assistance system for a vehicle includes a forward facing and a control having an image processor that processes image data captured by the camera. At least in part responsive to processing by the image processor, an alert to a driver of the equipped vehicle is generated based upon at least one of (i) detection of an inappropriate lane change maneuver of the equipped vehicle and (ii) a detection of a potential impact with another vehicle. The image processor processes image data captured by the forward facing camera to detect a traffic control device present within the field of view of the forward facing camera, and the system may generate an alert to the driver when it is determined that the vehicle is not appropriately responding to the detected traffic control device.
Abstract:
An imaging system for a vehicle includes an imaging sensor and a control. The imaging sensor is operable to capture an image of a scene occurring exteriorly of the vehicle. The control is responsive to the imaging sensor. The imaging system may be associated with a side object detection system, a lane change assist system, a lane departure warning system, a monitoring system, a passive steering system and/or the like. The control may be operable to process a reduced image data set more than other image data, which are representative of areas of the captured image outside of a target zone, to detect objects present within the target zone.
Abstract:
A method for assisting a user of a vehicle, in which driving-condition variables (v, a, q, ω, n) are sensed or ascertained via sensors of the vehicle, and a camera of the vehicle covers a coverage area of a road scene at least in front of the vehicle and outputs image signals. Based on the image signals, it is determined whether a further vehicle which is outputting blinking signals is in the coverage area. As a function of the ascertained driving-condition variables (v, a, q, ω, n) of the vehicle and as a function of the determination as to whether other vehicles are indicating a change of direction, information signals, particularly warning signals, are able to be output to the user and/or an automatic driver-assistance control is able to be implemented in which control signals for interventions in a vehicle control for a longitudinal control and/or lateral control, especially a distance control, are output. In this context, in each case different possible control interventions are able to be ascertained and carried out. Furthermore, a corresponding control device and the vehicle thereby made possible are provided.