Abstract:
Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight Computer-based methods are disclosed for process monitoring and control, and for data display and analysis.
Abstract:
Methods and apparatus for screening diverse arrays of materials using infrared imaging techniques are provided. Typically, each of the individual materials on the array will be screened or interrogated for the same material characteristic. Once screened, the individual materials may be ranked or otherwise compared relative to each other with respect to the material characteristic under investigation. According to one aspect, infrared imaging techniques are used to identify the active sites within an array of compounds by monitoring the temperature change resulting from a reaction. This same technique can also be used to quantify the stability of each new material within an array of compounds. According to another aspect, identification and characterization of condensed phase products is achieved, wherein library elements are activated by a heat source serially, or in parallel. According to another aspect, a Fourier transform infrared spectrometer is used to rapidly characterize a large number of chemical reactions contained within a combinatorial library.
Abstract:
A triangular wave generating circuit (21) generates a sweep voltage of a triangular wave, a VCO (22) generates a sweep of a frequency according to the sweep voltage, and a driving coil (4) is driven by the sweep voltage. From the current flowing through the driving coil (4), an interference component is extracted and rectified by a rectifier circuit (27). A peak hold circuit (28) holds a peak value of an interference voltage within a period corresponding to one sweep. The peak value thus held is compared by a comparator circuit (29) with a predetermined value and accordingly, a relay circuit (30) outputs a signal indicative of whether an object is present or not.
Abstract:
A method for measuring viscosity and shear rate at which the measurement is performed is provided, by utilizing an acoustic wave sensor, and calculating the shear rate as a function of the characteristic rate of quartz movement in response to a given power transmitted to a fluid, and the viscosity of the fluid. Related aspects of the invention provide for methods for controlling the shear rate at which a viscosity measurement is performed, and characterizing viscoelastic fluids at a plurality of shear rates.
Abstract:
A method of ultrasound inspection is provided. The method includes providing a composite first part, introducing ultrasound to the part, receiving reflections of the ultrasound introduced in the first part, and predicting a residual strength of the first part using an amplitude of the received reflections.
Abstract:
Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight. Computer-based methods are disclosed for process monitoring and control, and for data display and analysis.
Abstract:
The present invention relates to physical chemistry and can be used for a quality test of liquids, in particular, multi-component liquid products, to ascertain the conformity of various process liquids, pharmaceutical preparations, foodstuffs, biological liquids to standard in pharmacology, food processing and chemical industries, and in medical diagnostics. The method of invention enables determining of the mechanical impedance within a drop (1) of test liquid having a specified volume, in the preferred embodiment, 5 mcl, placed on the surface of a piezoelectric resonator (3) of ultrasound frequencies, which provides for excitation of shear modes within drop (1) while it is drying up. The obtained time dependence of the mechanical impedance of drop (1) is used as the information parameter. This information parameter is rather sensitive to the state of the liquid-crystalline structure of multi-component liquids, therefore, comparing the obtained time dependence with the same data for the etalon specimen allows one to assess the composition of a multi-component liquid, test the quality of liquid products, for example, foodstuffs, assess the prospective effectiveness of medical treatment with various medical preparations through analysis of a biological liquid, etc. In the apparatus of invention, the mechanical impedance of test liquid is determined from the disbalance voltage of a bridge circuit (9) comprising a piezoelectric resonator of ultrasound frequencies (3), in preferred embodiments, from the amplitude and/or phase of the disbalance voltage, which ensures high accuracy of measurements.
Abstract:
The viscometer provides a viscosity value (Xnull) which represents the viscosity of a fluid flowing in a pipe connected thereto. It comprises a vibratory transducer with at least one flow tube (13) for conducting the fluid, which communicates with the pipe. Driven by an excitation assembly (16), the flow tube (13) is vibrated so that friction forces are produced in the fluid. The viscometer further includes meter electronics (50) which feed an excitation current (iexc) into the excitation assembly (16). By means of the meter electronics (50), a first internal intermediate value (X1) is formed, which corresponds with the excitation current (iexc) and thus represents the friction forces acting in the fluid. According to the invention, a second internal intermediate value (X2), representing inhomogeneities in the fluid, is generated in the meter electronics (50), which then determine the viscosity value (Xnull) using the two intermediate values (X1, X2). The first internal intermediate value (X1) is preferably normalized by means of an amplitude control signal (yAM) for the excitation current (iexc), the amplitude control signal corresponding with the vibrations of the flow tube (13). As a result, the viscosity value (Xnull) provided by the viscometer is highly accurate and robust, particularly independently of the position of installation of the flow tube (13).
Abstract:
A sensor for measuring the viscosity of a fluid, which has an oscillator. The oscillator is dipped into the fluid. The surface of the oscillator is provided with a dirt-repellent coating.
Abstract:
A method and apparatus for measuring properties of a liquid composition includes a mechanical resonator, such as a cantilever, connected to a measurement circuit. The mechanical resonator can be covered with a coating to impart additional special detection propertied to the resonator, and multiple resonators can be attached together as a single sensor to obtain multiple frequency responses. The invention is particularly suitable for combinatorial chemistry applications, which require rapid analysis of chemical properties for screening.