Abstract:
A heating plate for a substrate support assembly in a semiconductor plasma processing apparatus, comprises multiple independently controllable planar heater zones arranged in a scalable multiplexing layout, and electronics to independently control and power the planar heater zones. A substrate support assembly in which the heating plate is incorporated includes an electrostatic clamping electrode and a temperature controlled base plate. Methods for manufacturing the heating plate include bonding together ceramic or polymer sheets having planar heater zones, power supply lines, power return lines and vias.
Abstract:
An etching depth measuring device for measuring the etching depth of an object to be processed, when etching the object to be processed by using active species present in a plasma, the etching depth measuring device comprising: a chamber in which is formed an introduction port for introducing a part of the active species; a member to be processed which is housed in the chamber and etched by the part of the active species; and a mass detecting element which receives a substance generated from the member to be processed and detects the mass of the received substance.
Abstract:
An etching depth measuring device for measuring the etching depth of an object to be processed, when etching the object to be processed by using active species present in a plasma, the etching depth measuring device comprising: a chamber in which is formed an introduction port for introducing a part of the active species; a member to be processed which is housed in the chamber and etched by the part of the active species; and a mass detecting element which receives a substance generated from the member to be processed and detects the mass of the received substance.
Abstract:
A dry etching method in which a plasma of an etching gas is generated and a magnetic material is dry-etched using a mask material made of a non-organic material, wherein an alcohol having at least one hydroxyl group is used as the etching gas. The alcohol used as the etching gas has one hydroxyl group such as an alcohol selected from the group including methanol (CH3OH), ethanol (C2H5OH) and propanol (C3H7OH).
Abstract translation:一种干蚀刻方法,其中产生蚀刻气体的等离子体并使用由非有机材料制成的掩模材料进行干蚀刻,其中使用具有至少一个羟基的醇作为蚀刻气体。 用作蚀刻气体的醇具有一个羟基,例如选自甲醇(CH 3 OH),乙醇(C 2 H 5)5 OH)和丙醇(C 3 H 7 OH)。
Abstract:
A plasma chamber enclosure structure for use in an RF plasma reactor. The plasma chamber enclosure structure being a single-wall dielectric enclosure structure of an inverted cup-shape configuration and having ceiling with an interior surface of substantially flat conical configuration extending to a centrally located gas inlet. The plasma chamber enclosure structure having a sidewall with a lower cylindrical portion generally transverse to a pedestal when positioned over a reactor base, and a transitional portion between the lower cylindrical portion and the ceiling. The transitional portion extends inwardly from the lower cylindrical portion and includes a radius of curvature. The structure being adapted to cover the base to comprise the RF plasma reactor and to define a plasma-processing volume over the pedestal. The structure being formed of a dielectric material of silicon, silicon carbide, quartz, and/or alumina being capable of transmitting inductive power therethrough from an adjacent antenna.
Abstract:
A plasma chamber enclosure structure for use in an RF plasma reactor. The plasma chamber enclosure structure being a single-wall dielectric enclosure structure of an inverted cup-shape configuration and having ceiling with an interior surface of substantially flat conical configuration extending to a centrally located gas inlet. The plasma chamber enclosure structure having a sidewall with a lower cylindrical portion generally transverse to a pedestal when positioned over a reactor base, and a transitional portion between the lower cylindrical portion and the ceiling. The transitional portion extends inwardly from the lower cylindrical portion and includes a radius of curvature. The structure being adapted to cover the base to comprise the RF plasma reactor and to define a plasma-processing volume over the pedestal. The structure being formed of a dielectric material of silicon, silicon carbide, quartz, and/or alumina being capable of transmitting inductive power therethrough from an adjacent antenna.
Abstract:
A method and apparatus for dry etching changes at least one of the effective pumping speed of a vacuum chamber and the gas flow rate to alter the processing of an etching pattern side wall of a sample between first and second conditions. The first and second conditions include the presence or absence of a deposit film, or the presence, absence or shape of a taper angle. Various parameters for controlling the first and second conditions are contemplated.
Abstract:
The invention is embodied in a plasma reactor including a plasma reactor chamber and a workpiece support for holding a workpiece near a support plane inside the chamber during processing, the chamber having a reactor enclosure portion facing the support, a cold body overlying the reactor enclosure portion, a plasma source power applicator between the reactor enclosure portion and the cold body and a thermally conductor between and in contact with the cold body and the reactor enclosure. The thermal conductor and the cold sink define a cold sink interface therebetween, the reactor preferably further including a thermally conductive substance within the cold sink interface for reducing the thermal resistance across the cold sink interface. The thermally conductive substance can be a thermally conductive gas filling the cold body interface. Alternatively, the thermally conductive substance can be a thermally conductive solid material. The reactor can include a gas manifold in the cold body communicable with a source of the thermally conductive gas an inlet through the cold body from the gas manifold and opening out to the cold body interface. The reactor can further include an O-ring apparatus sandwiched between the cold body and the thermal conductor and defining a gas-containing volume in the cold body interface of nearly infinitesimal thickness in communication with the inlet from the cold body. More generally, the reactor can include the facilitation of thermal transfer across an interface between a hot and/or cold sink and any part exposed to the reactor chamber interior atmosphere, such as the ceiling, wall or polymer-hardening precursor ring, for example, by the insertion into that interface of a thermally conductive gas or substance.
Abstract:
In accordance with a first aspect of the invention, a plasma reactor having a chamber for containing a plasma and a passageway communicating with the chamber is enhanced with a first removable plasma confinement magnet module placed adjacent the passageway including a first module housing and a first plasma confinement magnet inside the housing. It may further include a second removable plasma confinement magnet module placed adjacent the passageway including a second module housing, and a second plasma confinement magnet. Preferably, the first and second modules are located on opposite sides of the passageway. Moreover, the first and second plasma confinement magnets have magnetic orientations which tend to oppose plasma transport or leakage through the passageway. Preferably, the module housing includes a relatively non-magnetic thermal conductor such as aluminum and is in thermal contact with said chamber body. Cooling apparatus can be thermally coupled to the chamber body, whereby to maintain the first plasma confinement magnet below its Curie temperature. If the reactor includes a pumping annulus adjacent of a periphery of the chamber, then the passageway can be one which communicates between the chamber and the pumping annulus. Also, the passageway can be a wafer slit valve or a gas feed inlet. Such a gas feed inlet can be a center gas feed through a ceiling of the chamber. The module housing can rest upon the chamber side wall and the chamber ceiling can rest upon the module housing.
Abstract:
A method for etching at least partially through a transition metal-containing layer disposed above a substrate is disclosed. The transition metal-containing layer is disposed below an etch mask. The method includes providing a plasma processing system having a plasma processing chamber, and configuring the plasma processing chamber to etch the transition metal-containing layer. The plasma processing chamber configuring process includes configuring the plasma processing chamber to receive a source gas that includes HCl and Ar, and configuring a power supply associated with the plasma processing chamber to supply energy to strike a plasma from the source gas. The plasma processing chamber configuring process further includes configuring the plasma processing chamber to etch at least partially the transition metal-containing layer with the plasma.