Abstract:
A substrate device includes a layer of non-linear resistive transient protective material and a plurality of conductive elements that form part of a conductive layer. The conductive elements include a pair of electrodes that are spaced by a gap, but which electrically interconnect when the transient protective material is conductive. The substrate includes features to linearize a transient electrical path that is formed across the gap.
Abstract:
A voltage switchable dielectric material comprising a concentration of multi-component particles that are individually formed by a mechanical or mechanochemical bonding process that bonds a semiconductive or conductive-type host particle with multiple insulative, conductive, or semi-conductive guest particles.
Abstract:
A printed circuit board (PCB) includes an electronic element, a signal line, an input/output (I/O) interface, and a varistor. The I/O interface is connected to the electronic element through the signal line. The varistor includes a first terminal connected to the I/O interface, and a grounded second terminal. The varistor is close to the I/O interface, to eliminate static electricity flowing into the PCB from the I/O interface.
Abstract:
A method for designing a printed circuit board to meet a specification is described. A first voltage switchable dielectric material is placed in apposition with a first copper foil. A second voltage switchable dielectric material is placed in apposition with a second copper foil. An arcuate portion of the first copper foil is placed in apposition with a first side of an aluminum member, an adhesive substance being situated between the first copper foil and the first side of the aluminum member. An arcuate portion of the second copper foil in is placed apposition with a second side of the aluminum member, an adhesive substance being situated between the second copper foil and the second side of the aluminum member.
Abstract:
One or more embodiments provide for a light emitting diode device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio.
Abstract:
An ESD protection structure is provided. A substrate includes a first voltage variable material and has a first surface, a second surface substantially paralleled to the first surface and a via connecting the first and second surfaces. A first metal layer is disposed in the substrate for coupling to a ground terminal. The first voltage variable material is in a conductive state when an ESD event occurs, such that the via is electrically connected with the first metal layer to form a discharge path, and the first voltage variable material is in an isolation state when the ESD event is absent, such that the via is electrically isolated from the first metal layer.
Abstract:
A packaged semiconductor device (200) with a substrate (220) having, sandwiched in an insulator (221), a flat sheet-like sieve member (240) made of a non-linear material switching from insulator to conductor mode at a preset voltage. Both member surfaces are free of indentations; the member is perforated by through-holes, which are grouped into a first set (241) and a second set (242). Metal traces (251) over one member surface are positioned across the first set through-holes (241); each trace is connected to a terminal on the substrate top and, through the hole, to a terminal on the substrate bottom. Analogous for metal traces (252) over the opposite member surface and second set through-holes (242). Traces (252) overlap with a portion of traces (252) to form the locations for the conductivity switches, creating local ultra-low resistance bypasses to ground for discharging overstress events.
Abstract:
A first voltage variable material (“VVM”) includes an insulative binder, first conductive particles with a core and a shell held in the insulating binder and second conductive particles without a shell held in the insulating binder; a second VVM includes an insulating binder, first conductive particles with a core and a shell held in the insulating binder, second conductive particles without a shell held in the insulating binder, and semiconductive particles with a core and a shell held in the insulating binder; a third VVM includes only first conductive particles with a core and a shell held in the insulating binder.
Abstract:
A substrate device is designed by identifying one or more criteria for handling of a transient electrical event on the substrate device. The one or more criteria may be based at least in part on an input provided from a designer. From the one or more criteria, one or more characteristics may be determined for integrating VSD material as a layer within or on at least a portion of the substrate device. The layer of VSD material may be positioned to protect one or more components of the substrate from the transient electrical condition.
Abstract:
One or more embodiments provide for a light emitting diode device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio.