Abstract:
A gas sensor includes a substrate, a heater, a dielectric layer, a sensing electrode, and a gas sensitive film. The substrate has a sensing region and a peripheral region surrounding the sensing region, and the substrate further has an opening disposed in the sensing region. The heater is disposed at least above the opening, and the heater has an electrical resistivity larger than about 6×10−8 ohm-m. The dielectric layer is disposed on the heater. The sensing electrode is disposed on the dielectric layer. The gas sensitive film is disposed on the sensing electrode.
Abstract:
The present disclosure relates to a microelectromechanical systems (MEMS) package having two MEMS devices with different pressures, and an associated method of formation. In some embodiments, the (MEMS) package includes a device substrate and a cap substrate bonded together. The bonded substrate comprises a first cavity corresponding to a first MEMS device having a first pressure and a second cavity corresponding to a second MEMS device having a different second pressure. The second cavity comprises a major volume and a vent hole connected by a lateral channel disposed between the device substrate and the cap substrate and the vent hole is hermetically sealed by a sealing structure.
Abstract:
A method for packaging a microelectromechanical system (MEMS) device with an integrated circuit die using through mold vias (TMVs) is provided. According to the method, a MEMS substrate having a MEMS device is provided. A cap substrate is secured to a top surface of the MEMS substrate. The cap substrate includes a recess corresponding to the MEMS device in a bottom surface of the cap substrate. An integrated circuit die is secured to a top surface of the cap substrate over the recess. A housing covering the MEMS substrate, the cap substrate, and the integrated circuit die is formed. A through mold via (TMV) electrically coupled with the integrated circuit die and extending between a top surface of the housing and the integrated circuit die is formed. The structure resulting from application of the method is also provided.
Abstract:
A three-dimensional (3D) integrated circuit (IC) includes a first IC and a second IC. The first IC includes a MEMS device and a first bonding structure. The second IC includes a second bonding structure. The first and second bonding structures are bonded together to couple the first IC to the second IC. A conformal barrier layer is disposed over a surface of the second IC nearest the first IC. An etch isolation structure is arranged beneath the surface of the second IC and encloses a sacrificial region which is arranged on either side of the second bonding structure and which is arranged in the second IC.
Abstract:
The present disclosure is directed to an apparatus and method for manufacture thereof. The apparatus includes a first passive substrate bonded to a second active substrate by a conductive metal interface. The conductive metal interface allows for integration of different function devices at a wafer level.
Abstract:
The present disclosure relates to a MEMS device with a magnetic film disposed on a first substrate, and an associated method of formation. In some embodiments, the magnetic film is disposed on a planar front surface of the first substrate such that depositing and patterning processes of the magnetic film is improved. A sensing gap of a MEMS device associated with the magnetic film is located between the magnetic film and a recessed lateral surface of a second substrate. The second substrate is bonded to the first substrate at front surfaces of the first and second substrate. Forming the magnetic film on the planar front allows for patterning of the magnetic film without leaving unwanted residues of magnetic material. Without the unwanted residue of magnetic material, less contamination from the magnetic material is introduced after dry etching and passivation processes, improving yield and reliability of the MEMS device.
Abstract:
A method for forming an integrated semiconductor device includes providing a first wafer, providing a second wafer, and bonding the first wafer over the second wafer. The first wafer includes a first substrate having a microelectromechanical system (MEMS) device layer. The second wafer includes a second substrate having at least one active device, and at least one interconnect layer over the second substrate. The MEMS device layer is connected with the at least one interconnect layer. The method further includes forming at least one conductive plug through the first substrate and the MEMS device layer and inside the at least one interconnect layer, etching the second substrate and the at least one interconnect layer to form a cavity extending from a surface of the second substrate to the MEMS device layer, and etching the first substrate and the MEMS device layer to form a MEMS device interfacing with the cavity.
Abstract:
The present disclosure relates to a MEMS device with a magnetic film disposed on a first substrate, and an associated method of formation. In some embodiments, the magnetic film is disposed on a planar front surface of the first substrate such that depositing and patterning processes of the magnetic film is improved. A sensing gap of a MEMS device associated with the magnetic film is located between the magnetic film and a recessed lateral surface of a second substrate. The second substrate is bonded to the first substrate at front surfaces of the first and second substrate. Forming the magnetic film on the planar front allows for patterning of the magnetic film without leaving unwanted residues of magnetic material. Without the unwanted residue of magnetic material, less contamination from the magnetic material is introduced after dry etching and passivation processes, improving yield and reliability of the MEMS device.
Abstract:
A sensor is made up of two substrates which are adhered together. A first substrate includes a pressure-sensitive micro-electrical-mechanical (MEMS) structure and a conductive contact structure that protrudes outwardly beyond a first face of the first substrate. A second substrate includes a complementary metal oxide semiconductor (CMOS) device and a receiving structure made up of sidewalls that meet a conductive surface which is recessed from a first face of the second substrate. A conductive bonding material physically adheres the conductive contact structure to the conductive surface and electrically couples the MEMS structure to the CMOS device.
Abstract:
The present disclosure relates to a method of forming a plurality of MEMs device having a plurality of cavities with different pressures on a wafer package system, and an associated apparatus. In some embodiments, the method is performed by providing a work-piece having a plurality of microelectromechanical system (MEMs) devices. A cap wafer is bonded onto the work-piece in a first ambient environment having a first pressure. The bonding forms a plurality of cavities abutting the plurality of MEMs devices, which are held at the first pressure. One or more openings are formed in one or more of the plurality of cavities leading to a gas flow path that could be held at a pressure level different from the first pressure. The one or more openings in the one or more of the plurality of cavities are then sealed in a different ambient environment having a different pressure, thereby causing the one or more of the plurality of cavities to be held at the different pressure.