Abstract:
Disclosed are a composition for an electrode binder of a capacitive deionization apparatus including at least one a hydrophilic polymer and a bifunctional cross-linking agent having a hydroxy group or a carboxyl group at both terminal ends, and at least one anion exchange group therein, and the bifunctional cross-linking agent being cross-linkable with the at least one hydrophilic polymer, an electrode for a capacitive deionization apparatus including the composition, a capacitive deionization apparatus including the electrode, and a method of removing ions from a liquid by using the capacitive deionization apparatus.
Abstract:
An ion exchanger includes a sheet-shaped positive ion exchanger 2 in which binder particles 5 and positive ionic exchange resin particles 4 are mixed with each other, and a sheet-shaped porous negative ion exchanger 3 in which binder particles 7 and negative ionic exchange resin particles 6 are mixed with each other, the positive ion exchanger 2 and the negative ion exchanger 3 are bonded to each other to form an interface, and capacity of the negative ion exchanger 3 is greater than that of the positive ion exchanger 2. Therefore, the porous ion exchanger 1 is formed and absorbing ability of ion is increased, capacity of the negative ion exchanger 3 is made greater than that of the positive ion exchanger 2, regenerating ability of the ion exchanger with respect to absorbing ability of ion can be secured, and ion absorption and regeneration processing is carried out efficiently.
Abstract:
An apparatus and method for electrochemically modifying the retention of a species on a chromatography material is disclosed. The apparatus comprises a housing having an effluent flow channel adapted to permit fluid flow therethrough. The effluent flow channel comprises chromatography material. The apparatus further comprises first and second electrodes positioned such that at least a portion of the chromatography material is disposed between the first and second electrodes, and fluid flow through the apparatus is between, and in contact with, the first and second electrodes.
Abstract:
A liquid treatment process is described for sequential removal of ionic species of progressively decreasing ionic strength without precipitation or “scaling.” An aspect of the invention includes dual electrodeionization operations. The first electrodeionization operation is performed at a voltage calculated to remove strongly ionized species such as calcium and magnesium from the feed water without scaling. The product of the first electrodeionization operation is then subjected to a second electrodeionization operation. The second electrodeionization operation is performed at a voltage greater than the first electrodeionization operation, and is designed to remove more weakly ionized species such as silica and carbon dioxide, preventing scaling. More than two successive electrodeionization operations may be performed if desired. Multiple electrodeionization operations may occur in a single electrodeionization stack or in multiple electrodeionization stacks.
Abstract:
A water treatment system provides treated or softened water to a point of use by removing a portion of any hardness-causing species contained in water from a point of entry coming from a water source, such as municipal water, well water, brackish water and water containing foulants. The water treatment system typically treats the water containing at least some undesirable species before delivering the treated water to a point of use. The water treatment system has a reservoir system in line with an electrochemical device. The electrochemical device of the water treatment system is operated at a low current and low flow rate to minimize water splitting or polarization, which minimizes scale formation.
Abstract:
The present invention is directed to a water treatment or purification system and method for providing treated water in industrial, commercial and residential applications. The treatment system provides treated or softened water to a point of use by removing at least a portion of any hardness-causing species contained in water from a water source, such as municipal water, well water, brackish water and water containing foulants. The water treatment system includes an electrochemical device, such as an electrodeionization device, that can have at least one compartment that generates and traps hydrogen ions which can be used in another compartment of the electrochemical device such as, an electrode compartment, to reduce or at least dissolve any scale. Other applications of the system would be in the treatment and processing of foods and beverages, sugars, various industries such as the chemical, pharmaceutical, waste water treatment and power generating industries.
Abstract:
Improved electrodialysis (ED) stacks are disclosed having one or more components selected from the group:a) cation exchange membranes having ion exchange groups predominantly sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups or membranes which are selective to monovalent cations and simultaneously therewith, cation exchange granules selective to monovalent cations as packing in the dilute compartments;b) anion exchange membranes having as ion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and substantially no primary, secondary and/or tertiary amine and/or phosphine groups or membranes which are selective to monovalent anions simultaneously therewith, anion exchange granules selective to monovalent anions as packing in the dilute compartments;c) as packing in the dilute compartment, anion exchange granules which are selective to monovalent anions, or cation exchange granules which are selective to monovalent cations, or cation exchange granules having as exchange groups a predominant amount of sulfonic acid groups and a minor amount of weakly acidic and/or weakly basic groups, or anion exchange granules consisting of organic polymers having as anion exchange groups only quaternary ammonium and/or quaternary phosphonium groups and almost no primary, secondary and/or tertiary amine and/or phosphine groups.
Abstract:
An apparatus for producing deionized water consisting essentially of an electrodialyzer having cation exchange membranes and anion exchange membranes alternately arranged between a cathode and an anode to form demineralizing compartments and concentrating compartments, and ion exchangers accommodated in the demineralizing compartments, wherein a pressure of from 0.1 to 20 kg/cm.sup.2 is exerted between the ion exchangers accommodated in the demineralizing compartments and the cation exchange membranes and anion exchange membranes defining the demineralizing compartments.
Abstract:
An electrically regeneratable electrochemical cell (30) for capacitive deionization and electrochemical purification and regeneration of electrodes includes two end plates (31, 32), one at each end of the cell (30). Two end electrodes (35, 36) are arranged one at each end of the cell (30), adjacent to the end plates (31, 32). An insulator layer (33) is interposed between each end plate (31, 32) and the adjacent end electrode (35, 36). Each end electrode (35, 36) includes a single sheet (44) of conductive material having a high specific surface area and sorption capacity. In one embodiment, the sheet (44) of conductive material is formed of carbon aerogel composite. The cell (30) further includes a plurality of generally identical double-sided intermediate electrodes (37-43) that are equidistally separated from each other, between the two end electrodes (35, 36). As the electrolyte enters the cell, it flows through a continuous open serpentine channel (65-71) defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell (30), ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the cell (30) is saturated with the removed ions, the cell (30) is regenerated electrically, thus significantly minimizing secondary wastes.
Abstract:
An improved electrodeionization apparatus and method are provided. The electrodeionization apparatus includes an ion-concentrating compartment, an ion-depleting compartment, and electrolyte compartments, wherein alternating layers of anion exchange resins and cation exchange resins are positioned in the ion-depleting compartment, and the anion exchange resins comprise Type II anion resins. The incorporation of Type II anion material, alone or with Type I anion material, in anion permeable membranes and/or resins improves the electric current distribution, degree of resin regeneration, and deionization performance.