Abstract:
A touch window includes a substrate; and an electrode on the substrate, wherein the electrode includes a first mesh line extending in a first direction and having a first width; a second mesh line extending in a direction different from the first direction and having a second width; and an cross area in which the first and second mesh lines cross each other, the cross area having a third width, wherein the third width is larger than the first width, and the third width is equal to or less than 10 times of the first width.
Abstract:
A system that reduces crosstalk and return loss within electrical communication connectors includes at least two compensating capacitors connected in series that compensate each offending capacitor. An additional inductive component that is connected between two compensating capacitors so that the adjustable inductance of the inductive component can be varied to modify the capacitive coupling effect achieved by the compensating capacitors as a function of frequency. A shape-neutral structure containing two compensating capacitors and one series inductive component in between is positioned so that each compensating capacitor is juxtaposed parallel to the offending capacitor. There is no direct contact between the shape-neutral structure and the transmission lines, and the shape-neutral structure does not change the shape of PCB traces and reduces both crosstalk and return loss.
Abstract:
An apparatus and method for crosstalk compensation in a jack of a modular communications connector includes a flexible printed circuit board connected to jack contacts and to connections to a network cable. The flexible printed circuit board includes conductive traces arranged as one or more couplings to provide crosstalk compensation.
Abstract:
Provided is a printed circuit board including a first semiconductor device and a second semiconductor device mounted on a printed wiring board, the printed wiring board including a first and a second differential signal wirings each formed of a pair of signal transmission lines. The pair of signal transmission lines forming the first differential signal wiring are wired to have a relative arrangement in which one signal transmission line and another signal transmission line cross with each other at least once in the first differential signal wiring in a wiring direction thereof. The pair of signal transmission lines forming the second differential signal wiring are wired to have a relative arrangement in which one signal transmission line and another signal transmission line cross with each other at least once in the second differential signal wiring in a wiring direction thereof.
Abstract:
A dielectric element assembly includes a plurality of dielectric layers stacked on each other in a direction of lamination and extends in an x-axis direction. A signal line is provided in the dielectric element assembly and extends in the x-axis direction. A reference ground conductor is provided on a positive side in a z-axis direction relative to the signal line. An auxiliary ground conductor is provided on a negative side in the z-axis direction relative to the signal line. Via-hole conductors connect the reference ground conductor and the auxiliary ground conductor and are provided in the dielectric element assembly on the negative side relative to the center in a y-axis direction. A portion of the signal line in a section which includes the via-hole conductors is positioned on the positive side in the y-axis direction relative to another portion of the signal line in a section which does not include the via-hole conductors.
Abstract:
A dielectric element assembly includes a plurality of dielectric layers stacked on each other in a direction of lamination and extends in an x-axis direction. A signal line is provided in the dielectric element assembly and extends in the x-axis direction. A reference ground conductor is provided on a positive side in a z-axis direction relative to the signal line. An auxiliary ground conductor is provided on a negative side in the z-axis direction relative to the signal line. Via-hole conductors connect the reference ground conductor and the auxiliary ground conductor and are provided in the dielectric element assembly on the negative side relative to the center in a y-axis direction. A portion of the signal line in a section which includes the via-hole conductors is positioned on the positive side in the y-axis direction relative to another portion of the signal line in a section which does not include the via-hole conductors.
Abstract:
A semiconductor device has a substrate and RF coupler formed over the substrate. The RF coupler has a first conductive trace with a first end coupled to a first terminal of the semiconductor device, and a second conductive trace with a first end coupled to a second terminal of the semiconductor device. The first conductive trace is placed in proximity to a first portion of the second conductive trace. An integrated passive device is formed over the substrate. A second portion of the second conductive trace operates as a circuit component of the integrated passive device. The integrated passive device can be a balun or low-pass filter. The RF coupler also has a first capacitor coupled to the first terminal of the semiconductor device, and second capacitor coupled to a third terminal of the semiconductor device for higher directivity. The second conductive trace is wound to exhibit an inductive property.
Abstract:
A method of making a printed circuit board includes providing a substrate; providing a circuit design; determining non-conducting intersections between each of a plurality of conductive traces; forming a first set of conductive traces on the substrate; applying insulation material on the first set of traces at each of the non-conducting intersections; and forming a second set of conductive traces over the first set of traces and insulating material.
Abstract:
A transmission line structure emplaces at a substrate which includes a first layout layer, a first dielectric layer, a second dielectric layer, a second dielectric layer, and a grounding layer includes a first transmission line pair and at least one second transmission line. The first transmission line pair is set on the first layout layer. The second transmission line is set on the second layout layer. A line of first transmission line pair and a line of the second transmission line cross each other and form a crossing area. A width of the line is narrow. A distance between the first transmission line pair and the second transmission line at the crossing area is less than a distance at an outstanding area.
Abstract:
Buffer structures are provided that can be used to reduce a strain in a conformable electronic system that includes compliant components in electrical communication with more rigid device components. The buffer structures are disposed on, or at least partially embedded in, the conformable electronic system such that the buffer structures overlap with at least a portion of a junction region between a compliant component and a more rigid device component. The buffer structure can have a higher value of Young's modulus than an encapsulant of the conformable electronic system.