Abstract:
A device is provided for monitoring the total current discharged from a battery. The device includes a bridge circuit of resistors in which one of the resistors has a resistance which varies according to the current which has passed through it. Whenever the battery passes a current to a load, a small portion of the current is passed through the bridge circuit.
Abstract:
A fan-out wafer level package is provided with a semiconductor die embedded in a reconstituted wafer. A redistribution layer is positioned over the semiconductor die, and includes a land grid array on a face of the package. A copper heat spreader is formed in the redistribution layer over the die in a same layer as a plurality of electrical traces configured to couple circuit pads of the semiconductor die to respective contact lands of the land grid array. In operation, the heat spreader improves efficiency of heat transfer from the die to the circuit board.
Abstract:
A sensor package includes a radiation source and a radiation detector provided on a substrate. A cover member is mounted on or affixed to the substrate over the source and detector. The cover member includes an opaque housing, a first transparent portion provided over the source, a second transparent portion provided over the detector and a transparent insert within the housing and positioned at one of said transparent portions. An opaque protrusion is provided on the housing separating a region associate with the first transparent portion (and radiation source) from a region associated with the second transparent portion (and detector), the protrusion attached to a surface of the substrate.
Abstract:
A bar formed from a reconstituted wafer and containing one or more conductive material filled voids is used to electrically and physically connect the top and bottom packages in a package-on-package (PoP) package. The bar is disposed in the fan out area of the lower package forming the PoP package.
Abstract:
An optical detection sensor and method of forming same. The optical detection sensor be a proximity detection sensor that includes an optical system and a selectively transmissive structure. Electromagnetic radiation such as laser light can be emitted through a transmissive portion of the selectively transmissive structure. A reflected beam can be detected to determine the presence of an object.
Abstract:
The present disclosure is directed to embodiments of optical sensor packages. For example, at least one embodiment of an optical sensor package includes a light-emitting die, a light-receiving die, and an interconnect substrate within a first resin. A first transparent portion is positioned on the light-emitting die and the interconnect substrate, and a second transparent portion is positioned on the light-receiving die and the interconnect substrate. A second resin is on the first resin, the interconnect substrate, and the first and second transparent portions, respectively. The second resin partially covers respective surfaces of the first and second transparent portions, respectively, such that the respective surfaces are exposed from the second resin.
Abstract:
An integrated circuit transistor device includes a semiconductor substrate providing a drain, a first doped region buried in the semiconductor substrate providing a body and a second doped region in the semiconductor substrate providing a source. A trench extends into the semiconductor substrate and passes through the first and second doped regions. An insulated polygate region within the trench surrounds a polyoxide region that may have void inclusion. The polygate region is formed by a first gate lobe and second gate lobe on opposite sides of the polyoxide region. A pair of gate contacts are provided at each trench. The pair of gate contacts includes: a first gate contact extending into the first gate lobe at a location laterally offset from the void and a second gate contact extending into the second gate lobe at a location laterally offset from the void.
Abstract:
The present disclosure is directed to a gas sensor device that detects gases with large molecules (e.g., a gas with a molecular weight between 150 g/mol and 450 g/mol), such as siloxanes. The gas sensor device includes a thin film gas sensor and a bulk film gas sensor. The thin film gas sensor and the bulk film gas sensor each include a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. The SMO film of the thin film gas sensor is an thin film (e.g., between 90 nanometers and 110 nanometers thick), and the SMO film of the bulk film gas sensor is an thick film (e.g., between 5 micrometers and 20 micrometers thick). The gas sensor device detects gases with large molecules based on a variation between resistances of the SMO thin film and the SMO thick film.
Abstract:
An integrated circuit device includes a metal contact and a passivation layer extending on a sidewall of the metal contact and on first and second surface portions of a top surface of the metal contact. The passivation layer is format by a stack of layers including: a tetraethyl orthosilicate (TEOS) layer; a Phosphorus doped TEOS (PTEOS) layer on top of the TEOS layer; and a Silicon-rich Nitride layer on top of the PTEOS layer. The TEOS and PTEOS layers extend over the first surface portion, but not the second surface portion, of the top surface of the metal contact. The Silicon-rich Nitride layer extends over both the first and second surface portions, and is in contact with the second surface portion.
Abstract:
An integrated circuit includes a polysilicon region that is doped with a dopant. A portion of the polysilicon region is converted to a polyoxide region which includes un-oxidized dopant ions. A stack of layers overlies over the polyoxide region. The stack of layers includes: a first ozone-assisted sub-atmospheric pressure thermal chemical vapor deposition (O3 SACVD) TEOS layer; and a second O3 SACVD TEOS layer; wherein the first and second O3 SACVD TEOS layers are separated from each other by a dielectric region. A thermally annealing is performed at a temperature which induces outgassing of passivation atoms from the first and second O3 SACVD TEOS layers to migrate to passivate interface charges due to the presence of un-oxidized dopant ions in the polyoxide region.