Abstract:
A method is generally described which includes operating an electrical energy storage device or an electrochemical energy generation device includes placing an electrical load to draw current from the electrical energy storage device or the electrochemical energy generation device. The electrical energy storage device or the electrochemical energy generation device includes a housing having an external surface and an internal surface. The method also includes generating electricity by at least one component within the housing. At least one component is configured to generate electrical energy in combination with other components, chemicals, or materials residing within the housing. Further, the method includes thermal control of the electrical energy storage device or the electrochemical energy generation device by transferring heat to a plurality of microchannels coupled to at least one of the internal surface of the housing or the at least one internal components. The at least one microchannel is at least partially formed of or coated with a high thermal conductivity material. The high thermal conductivity material has a high k-value. The high k-value is greater than approximately 410 W/(m*K). Further still, the method includes transferring the collected heat through a thermal sink coupled to the microchannels. The thermal sink is configured to transfer heat energy to or from the microchannel and to receive a fluid flowing through the microchannels.
Abstract:
Embodiments disclosed herein are directed to systems including an internal power transmitter that delivers energy out of a living subject to power at least one external device that is in communication with the internal power transmitter, and related apparatuses, devices, and methods of use.
Abstract:
Systems, devices, methods, and compositions are described for providing an actively controllable shunt configured to, for example, monitor, treat, or prevent an infection.
Abstract:
A device may include a determination module for determining at least one of a status indicative of combustible fuel utilization or a status indicative of electricity utilization for propelling a hybrid vehicle; and a transmitter coupled with the determination module for transmitting the at Least one of the status indicative of combustible fuel utilization or the status indicative of electricity utilization for the hybrid vehicle to an off-site entity.
Abstract:
A method may include receiving at least one of a status indicative of combustible fuel utilization or a status indicative of electricity utilization for a hybrid vehicle; and allocating a standing based upon the at least one of the status indicative of combustible fuel utilization or the status indicative of electricity utilization for the vehicle, wherein the standing is allocated upon receipt of the status.
Abstract:
A method may include receiving at least one of a status indicative of combustible fuel utilization or a status indicative of electricity utilization for a hybrid vehicle; and allocating a standing based upon the at least one of the status indicative of combustible fuel utilization or the status indicative of electricity utilization for the vehicle, wherein the standing is allocated upon receipt of the status.
Abstract:
Systems, devices, methods, and compositions are described for providing an actively controllable shunt configured to, for example, monitor, treat, or prevent an infection.
Abstract:
Systems, devices, methods, and compositions are described for providing an actively controllable shunt configured to, for example, monitor, treat, or prevent an infection.
Abstract:
A method may include dispensing a dose of an inhalable compound according to a dosing instruction set; and maintaining a hands-free article for dispensing the inhalable compound in an operable dispensing position.
Abstract:
One aspect relates to a hybrid propulsive technique, comprising providing a flow of a working fluid through at least a portion of an at least one jet engine. The at least one jet engine includes an at least one turbine section, wherein the at least one turbine section includes at least one turbine stage. The at least one turbine stage includes an at least one turbine rotor and an at least one independently rotatable turbine stator. The hybrid propulsive technique further involves extracting energy at least partially in the form of electrical power from the working fluid, and converting at least a portion of the electrical power to torque. The hybrid propulsive technique further comprises rotating an at least one at least one independently rotatable turbine stator at least partially responsive to the converting the at least a portion of the electrical power to torque.