Abstract:
Methods of etching back shallow trench isolation (STI) dielectric and trimming the exposed floating gate without breaking vacuum are described. The methods include recessing silicon oxide dielectric gapfill to expose vertical sidewalls of polysilicon floating gates. The exposed vertical sidewalls are then isotropically etched to evenly thin the polysilicon floating gates on the same substrate processing mainframe. Both recessing silicon oxide and isotropically etching polysilicon use remotely excited fluorine-containing apparatuses attached to the same mainframe to facilitate performing both operations without an intervening atmospheric exposure. An inter-poly dielectric may then be conformally deposited either on the same mainframe or outside the mainframe.
Abstract:
A method of etching carbon films on patterned heterogeneous structures is described and includes a gas phase etch using remote plasma excitation. The remote plasma excites a fluorine-containing precursor and an oxygen-containing precursor, the plasma effluents created are flowed into a substrate processing region. The plasma effluents etch the carbon film more rapidly than silicon, silicon nitride, silicon carbide, silicon carbon nitride and silicon oxide.
Abstract:
A method of anisotropically dry-etching exposed substrate material on a patterned substrate is described. The patterned substrate has a gap formed in a single material made from, for example, a silicon-containing material or a metal-containing material. The method includes directionally ion-implanting the patterned structure to implant the bottom of the gap without implanting substantially the walls of the gap. Subsequently, a remote plasma is formed using a fluorine-containing precursor to etch the patterned substrate such that either (1) the walls are selectively etched relative to the floor of the gap, or (2) the floor is selectively etched relative to the walls of the gap. Without ion implantation, the etch operation would be isotropic owing to the remote nature of the plasma excitation during the etch process.
Abstract:
A method of conditioning internal surfaces of a plasma source includes flowing first source gases into a plasma generation cavity of the plasma source that is enclosed at least in part by the internal surfaces. Upon transmitting power into the plasma generation cavity, the first source gases ignite to form a first plasma, producing first plasma products, portions of which adhere to the internal surfaces. The method further includes flowing the first plasma products out of the plasma generation cavity toward a process chamber where a workpiece is processed by the first plasma products, flowing second source gases into the plasma generation cavity. Upon transmitting power into the plasma generation cavity, the second source gases ignite to form a second plasma, producing second plasma products that at least partially remove the portions of the first plasma products from the internal surfaces.
Abstract:
A method of removing titanium nitride hardmask is described. The hardmask resides above a low-k dielectric layer prior to removal and the low-k dielectric layer retains a relatively low net dielectric constant after the removal process. The low-k dielectric layer may be part of a dual damascene structure having copper at the bottom of the vias. A non-porous carbon layer is deposited prior to the titanium nitride hardmask removal to protect the low-k dielectric layer and the copper. The titanium nitride hardmask is removed with a gas-phase etch using plasma effluents formed in a remote plasma from a chlorine-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride.
Abstract:
Methods of selectively etching titanium oxide relative to silicon oxide, silicon nitride and/or other dielectrics are described. The methods include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor and/or a chlorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium oxide. The plasmas effluents react with exposed surfaces and selectively remove titanium oxide while very slowly removing other exposed materials. A direction sputtering pretreatment is performed prior to the remote plasma etch and enables an increased selectivity as well as a directional selectivity. In some embodiments, the titanium oxide etch selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region.
Abstract:
Methods of selectively etching tungsten from the surface of a patterned substrate are described. The etch electrically separates vertically arranged tungsten slabs from one another as needed, for example, in the manufacture of vertical flash memory devices. The tungsten etch may selectively remove tungsten relative to films such as silicon, polysilicon, silicon oxide, aluminum oxide, titanium nitride and silicon nitride. The methods include exposing electrically-shorted tungsten slabs to remotely-excited fluorine formed in a capacitively-excited chamber plasma region. The methods then include exposing the tungsten slabs to remotely-excited fluorine formed in an inductively-excited remote plasma system. A low electron temperature is maintained in the substrate processing region during each operation to achieve high etch selectivity.
Abstract:
Methods of forming single crystal channel material in a 3-d flash memory cell using only gas-phase etching techniques are described. The methods include gas-phase etching native oxide from a polysilicon layer on a conformal ONO layer. The gas-phase etch also removes native oxide from the exposed single crystal silicon substrate the bottom of a 3-d flash memory hole. The polysilicon layer is removed, also with a gas-phase etch, on the same substrate processing mainframe. Both native oxide removal and polysilicon removal use remotely excited fluorine-containing apparatuses attached to the same mainframe to facilitate performing both operations without an intervening atmospheric exposure. Epitaxial silicon is then grown from the exposed single crystal silicon to create a high mobility replacement channel.
Abstract:
Methods of etching back shallow trench isolation (STI) dielectric and trimming the exposed floating gate without breaking vacuum are described. The methods include recessing silicon oxide dielectric gapfill to expose vertical sidewalls of polysilicon floating gates. The exposed vertical sidewalls are then isotropically etched to evenly thin the polysilicon floating gates on the same substrate processing mainframe. Both recessing silicon oxide and isotropically etching polysilicon use remotely excited fluorine-containing apparatuses attached to the same mainframe to facilitate performing both operations without an intervening atmospheric exposure. An inter-poly dielectric may then be conformally deposited either on the same mainframe or outside the mainframe.
Abstract:
Methods are described herein for selectively etching titanium nitride relative to dielectric films, which may include, for example, alternative metals and metal oxides lacking in titanium and/or silicon-containing films (e.g. silicon oxide, silicon carbon nitride and low-K dielectric films). The methods include a remote plasma etch formed from a chlorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride. The plasma effluents react with exposed surfaces and selectively remove titanium nitride while very slowly removing the other exposed materials. The substrate processing region may also contain a plasma to facilitate breaking through any titanium oxide layer present on the titanium nitride. The plasma in the substrate processing region may be gently biased relative to the substrate to enhance removal rate of the titanium oxide layer.