Bonded wafer optical MEMS process
    182.
    发明申请
    Bonded wafer optical MEMS process 有权
    粘结晶圆光学MEMS工艺

    公开(公告)号:US20020117728A1

    公开(公告)日:2002-08-29

    申请号:US09921456

    申请日:2001-08-03

    Abstract: A microelectromechanical system is fabricated from a substrate having a handle layer, a silicon sacrificial layer and a device layer. A micromechanical structure is etched in the device layer and the underlying silicon sacrificial layer is etched away to release the micromechanical structure for movement. One particular micromechanical structure described is a micromirror.

    Abstract translation: 由具有手柄层,硅牺牲层和器件层的衬底制造微机电系统。 在器件层中蚀刻微机械结构,并蚀刻掉下面的硅牺牲层以释放用于移动的微机械结构。 所描述的一个特定的微机械结构是微镜。

    CMOS-compatible MEM switches and method of making
    183.
    发明授权
    CMOS-compatible MEM switches and method of making 失效
    CMOS兼容MEM开关及制作方法

    公开(公告)号:US06396368B1

    公开(公告)日:2002-05-28

    申请号:US09438085

    申请日:1999-11-10

    Abstract: A microelectromechanical (MEM) switch is fabricated inexpensively by using processing steps which are standard for fabricating multiple metal layer integrated circuits, such as CMOS. The exact steps may be adjusted to be compatible with the process of a particular foundry, resulting in a device which is both low cost and readily integrable with other circuits. The processing steps include making contacts for the MEM switch from metal plugs which are ordinarily used as vias to connect metal layers which are separated by a dielectric layer. Such contact vias are formed on either side of a sacrificial metallization area, and then the interconnect metallization is removed from between the contact vias, leaving them separated. Dielectric surrounding the contacts is etched back so that they protrude toward each other. Thus, when the contacts are moved toward each other by actuating the MEM switch, they connect firmly without obstruction. Tungsten is typically used to form vias in CMOS processes, and it makes an excellent contact material, but other via metals may also be employed as contacts. Interconnect metallization may be employed for other structural and interconnect needs of the MEM switch, and is preferably standard for the foundry and process used. Various metals and dielectric materials may be used to create the switches, but in a preferred embodiment the interconnect metal layers are aluminum and the dielectric material is SiO2, materials which are fully compatible with standard four-layer CMOS fabrication processes.

    Abstract translation: 通过使用标准制造多个金属层集成电路(如CMOS)的处理步骤,廉价地制造了微机电(MEM)开关。 可以将精确的步骤调整为与特定代工厂的过程兼容,从而导致低成本且易于与其他电路集成的装置。 处理步骤包括通过通常用作通孔的金属插头进行MEM开关的接触,以连接由电介质层分离的金属层。 这种接触通孔形成在牺牲金属化区域的任一侧,然后从接触通孔之间移除互连金属化,使它们分离。 围绕触点的介质被回蚀,使得它们彼此突出。 因此,当通过致动MEM开关使触点彼此移动时,它们牢固地连接而不阻塞。 钨通常用于在CMOS工艺中形成通孔,并且它制成优良的接触材料,但也可以使用其它通孔金属作为接触。 互连金属化可以用于MEM开关的其他结构和互连需求,并且优选地是用于所使用的铸造和工艺的标准。 可以使用各种金属和介电材料来制造开关,但是在优选实施例中,互连金属层是铝,并且介电材料是SiO 2,与标准四层CMOS制造工艺完全兼容的材料。

    MICROMACHINED STRUCTURE FOR OPTO-MECHANICAL MICRO-SWITCH
    184.
    发明申请
    MICROMACHINED STRUCTURE FOR OPTO-MECHANICAL MICRO-SWITCH 审中-公开
    机械式微动开关的微机械结构

    公开(公告)号:US20010046346A1

    公开(公告)日:2001-11-29

    申请号:US09366428

    申请日:1999-08-02

    Inventor: BRENT E. BURNS

    Abstract: An opto-mechanical micro-switch has a micromachined structure fabricated from a single silicon substrate. The micromachined structure includes an inner frame connected by a pair of beams to an outer frame. The beams define an axis of rotation around which the inner frame rotates relative to the outer frame. Flat walls are formed on the inner frame by an anisotropic etching process. When the inner frame rotates relative to the outer frame, the flat wall pivots into a vertical position to reflect or impede light passing from a light source to a light receiver. During fabrication, etch-stop material is selectively deposited in predefined regions of the single silicon substrate, and then a masking layer is formed and patterned. The anisotropic etching process is then performed through openings in the masking layer to form the inner frame and the outer frame. The etch-stop material prevents etching in the predefined regions that are located between the inner and outer frames, thereby forming the beams. In one embodiment, Permalloy regions are formed on the inner frame prior to the anisotropic etching process. These Permalloy regions are subsequently utilized as part of a drive motor to rotate the inner frame relative to the outer frame.

    Abstract translation: 光机械微型开关具有由单个硅衬底制造的微加工结构。 微加工结构包括通过一对梁连接到外框架的内框架。 梁限定旋转轴线,内框架围绕其旋转相对于外框架。 通过各向异性蚀刻工艺在内框架上形成平坦的壁。 当内框架相对于外框架旋转时,平壁枢转成垂直位置以反射或阻碍从光源通向光接收器的光。 在制造期间,将蚀刻停止材料选择性地沉积在单个硅衬底的预定区域中,然后形成掩模层并构图。 然后通过掩模层中的开口进行各向异性蚀刻工艺以形成内框架和外框架。 蚀刻停止材料防止位于内框架和外框架之间的预定区域中的蚀刻,从而形成梁。 在一个实施例中,在各向异性蚀刻工艺之前,在内框架上形成坡莫合金区域。 这些坡莫合金区域随后被用作驱动马达的一部分,以使内框架相对于外框架旋转。

    Method for fabricating a micromechanical component
    185.
    发明授权
    Method for fabricating a micromechanical component 有权
    微机械部件的制造方法

    公开(公告)号:US06268232B1

    公开(公告)日:2001-07-31

    申请号:US09302224

    申请日:1999-04-29

    Abstract: A method for fabricating a micromechanical component, in particular a surface-micromechanical acceleration sensor, involves preparing a substrate and providing an insulation layer on the substrate, in which a patterned circuit trace layer is buried. A conductive layer, including a first region and a second region, is provided on the insulation layer, and a movable element is configured in the first region by forming a first plurality of trenches and by using an etching agent to remove at least one portion of the insulation layer from underneath the conductive layer. A contact element is formed and electrically connected to the circuit trace layer in the second region by configuring a second plurality of trenches, and the resultant movable element is encapsulated in the first region. The second plurality of trenches for forming the contact element in the second region is first formed after the encapsulation of the movable element formed in the first region.

    Abstract translation: 用于制造微机械部件,特别是表面微机械加速度传感器的方法涉及准备衬底并在衬底上提供绝缘层,其中掩埋有图案化的电路迹线层。 包括第一区域和第二区域的导电层设置在绝缘层上,并且可移动元件通过形成第一多个沟槽而被构造在第一区域中,并且通过使用蚀刻剂去除至少一部分 绝缘层从导电层下面。 通过构造第二多个沟槽,形成接触元件并在第二区域中电连接到电路迹线层,并且所得到的可移动元件被封装在第一区域中。 在第二区域中形成接触元件的第二多个沟槽首先在形成在第一区域中的可移动元件的封装之后形成。

    Manufacturing method for micromechanical component
    186.
    发明授权
    Manufacturing method for micromechanical component 有权
    微机械部件的制造方法

    公开(公告)号:US06187607B1

    公开(公告)日:2001-02-13

    申请号:US09292282

    申请日:1999-04-15

    Abstract: A manufacturing method for a micromechanical component, and in particular for a micromechanical rotation rate sensor, which has a supporting first layer, an insulating second layer that is arranged on the first layer, and a conductive third layer that is arranged on the second layer. The method includes the following steps: provide the second layer, in the form of patterned first and second insulation regions, on the first layer; provide a first protective layer on an edge region of the first insulation regions and on a corresponding boundary region of the first layer; provide the third layer on the structure resulting from the previous steps; pattern out a structure of conductor paths running on the first insulation regions, and a functional structure of the micromechanical component above the second insulation regions, from the third layer; and remove the second layer in the second insulation regions, the second layer being protected in the first insulation regions by the first protective layer in such a way that it is essentially not removed there.

    Abstract translation: 具有支撑第一层,布置在第一层上的绝缘第二层和布置在第二层上的导电第三层的微机械组件的制造方法,特别是用于微机械转速传感器的制造方法。 该方法包括以下步骤:在第一层上提供呈图案化的第一和第二绝缘区域的形式的第二层; 在所述第一绝缘区域的边缘区域和所述第一层的对应边界区域上提供第一保护层; 提供由上述步骤导致的结构上的第三层; 形成在第一绝缘区域上运行的导体路径的结构以及来自第三层的第二绝缘区域上方的微机械部件的功能结构; 并且在所述第二绝缘区域中移除所述第二层,所述第二层在所述第一绝缘区域中被所述第一保护层保护,使得其基本上不被去除。

    Micromechanical system fabrication method using (111) single crystalline
silicon
    187.
    发明授权
    Micromechanical system fabrication method using (111) single crystalline silicon 有权
    (111)单晶硅的微机械系统制造方法

    公开(公告)号:US6150275A

    公开(公告)日:2000-11-21

    申请号:US250519

    申请日:1999-02-16

    Abstract: Disclosed is a micromechanical system fabrication method using (111) single crystalline silicon as a silicon substrate and employing a reactive ion etching process in order to pattern a microstructure that will be separated from the silicon substrate and a selective release-etching process utilizing an aqueous alkaline solution in order to separate the microstructure from the silicon substrate. According to the micromechanical system fabrication method of the present invention, the side surfaces of microstructures can be formed to be vertical by employing the RIE technique. Furthermore, the microstructures can be readily separated from the silicon substrate by employing the selective release-etching technique using slow etching {111} planes as the etch stop in an aqueous alkaline solution. In addition, etched depths can be adjusted during the RIE step, thereby adjusting the thickness of the microstructure and the spacing between the microstructure and the silicon substrate.

    Abstract translation: 公开了一种使用(111)单晶硅作为硅衬底并采用反应离子蚀刻工艺以便将从硅衬底分离的微结构图案和利用碱性水溶液的选择性剥离蚀刻工艺的微机械系统制造方法 溶液以将微结构与硅衬底分离。 根据本发明的微机械系统制造方法,通过采用RIE技术,可以将微结构的侧面形成为垂直的。 此外,通过使用选择性剥离蚀刻技术,通过使用慢蚀刻{111}晶面作为碱性水溶液中的蚀刻停止,微结构可以容易地与硅衬底分离。 此外,可以在RIE步骤期间调整蚀刻深度,从而调整微结构的厚度和微结构与硅衬底之间的间隔。

    Micromachined capillary electrophoresis device
    190.
    发明授权
    Micromachined capillary electrophoresis device 失效
    微加工毛细管电泳装置

    公开(公告)号:US5824204A

    公开(公告)日:1998-10-20

    申请号:US671428

    申请日:1996-06-27

    Applicant: John H. Jerman

    Inventor: John H. Jerman

    Abstract: A micromachined structure for handling fluids with an applied high voltage, i.e. for electrophoresis, includes a glass or other highly insulative substrate on which are formed very small diameter capillary channels of e.g. silicon nitride. Due to the absence of a silicon substrate, this structure is highly electrically insulative. The silicon nitride channels are formed by a micro-machining and etch process, so that they are initially defined in an etched sacrificial silicon wafer by conformal coating of etched features in the silicon wafer with a silicon nitride layer, which is then patterned to define the desired channels. The silicon wafer is bonded to the glass substrate and the bulk of the silicon wafer is sacrificially etched away, leaving the desired silicon nitride channels with supporting silicon mesas. The remaining silicon nitride "shell" is bonded to the glass substrate and substantially duplicates the etched features in the original silicon wafer. The capillary channels are of a material such as low stress silicon nitride and there is no electrical shorting path to the highly insulative glass substrate.

    Abstract translation: 用于处理具有施加的高电压(即电泳)的流体的微加工结构包括玻璃或其它高度绝缘的基底,其上形成非常小直径的毛细管通道。 氮化硅。 由于没有硅衬底,这种结构是高度电绝缘的。 通过微加工和蚀刻工艺形成氮化硅沟道,使得它们最初在蚀刻的牺牲硅晶片中通过在氮化硅层中对硅晶片中的蚀刻特征进行保形涂覆来限定,该氮化硅层被图案化以限定 所需渠道。 将硅晶片结合到玻璃基板上,并将硅晶片的大部分牺牲蚀刻掉,留下所需的具有支撑硅台面的氮化硅沟道。 剩余的氮化硅“壳”结合到玻璃基板上,并且基本上复制了原始硅晶片中的蚀刻特征。 毛细通道是诸如低应力氮化硅的材料,并且没有到高绝缘性玻璃基板的电短路。

Patent Agency Ranking