摘要:
A pressure-sensitive adhesive sheet according to the present invention is a pressure-sensitive adhesive sheet in which a pressure-sensitive adhesive layer is provided on a base film, in which the base film contains conductive fibers, and in which an electrically conductive path is formed between the pressure-sensitive adhesive layer and the base film. With this structure, an electrical continuity test can be performed even in a condition where a semiconductor wafer or a semiconductor chip formed by dicing the semiconductor wafer is applied, and deformation (warping) and damage of the semiconductor wafer and generation of flaws and scratches on the backside can be prevented in the test.
摘要:
An adhesive sheet for processing semiconductor substrates comprises a UV rays- and/or radiation-transmittable base film and an adhesive layer that undergoes a polymerization curing reaction by means of UV rays and/or radiation, wherein the adhesive layer is formed using a multifunctional acrylate oligomer and/or monomer having a double bond, and is blended so as to result in 1 double bond per total average molecular weight of 225 to 8000 as determined on the basis of the weight average molecular weight of the multifunctional acrylate oligomer and/or monomer.
摘要:
Disclosed is an adhesive sheet for inspection, which is obtained by arranging an adhesive layer on a base film. The base film and the adhesive layer are electrically conductive, and an electrically conductive path is formed between the base film and the adhesive layer. Consequently, an inspection for electrical conduction of a semiconductor wafer or a semiconductor chip obtained by dicing a semiconductor wafer can be performed while the semiconductor wafer or the semiconductor chip is bonded to the adhesive sheet. In addition, this adhesive sheet for inspection enables to prevent deformation (warping) or breakage of a semiconductor wafer or generation of cracks or scratches on the back surface of the semiconductor wafer during the inspection.
摘要:
An adhesive sheet for laser processing, comprises a base film and an adhesive layer laminated on the surface of the base film, wherein the base film has a melting protection layer on the back side thereof. According to the adhesive sheet for laser processing of the present invention, the melting of the base film caused by the local concentration of laser beam energy at the places irradiated with the laser beam can be effectively prevented. Accordingly, the back side of the base film can be prevented from locally adhering to the processing table in the dicing apparatus, and subsequent steps, namely, drawing the base film to separate the workpiece from the adhesive layer, and individually recovering these, can be carried out easily and efficiently.
摘要:
The present invention provides a production method of an anisotropic conductive film, which method includes the steps of (a) winding an insulated wire around a core member to form one roll of a winding layer, this insulated wire including a metal conductor wire and a coating layer made from an insulating resin, this coating layer being formed on the wire, placing an insulating resin film on the obtained winding layer, and repeating the winding and the placing to give a laminate alternately having the winding layer having a single row of insulated wires and an insulating resin layer made from the insulating resin film, (b) partially or entirely melting at least one of the coating layer and the insulating resin layer to integrate the winding layer and the insulating resin layer, and (c) slicing the laminate along a plane forming an angle with the insulated wire in a desired film thickness.
摘要:
The present invention relates to a dicing tape-integrated film for semiconductor back surface, which includes: a dicing tape including a base material layer, a first pressure-sensitive adhesive layer and a second pressure-sensitive adhesive layer stacked in this order, and a film for semiconductor back surface stacked on the second pressure-sensitive adhesive layer of the dicing tape, in which a peel strength Y between the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer is larger than a peel strength X between the second pressure-sensitive adhesive layer and the film for semiconductor back surface, and in which the peel strength X is from 0.01 to 0.2 N/20 mm, and the peel strength Y is from 0.2 to 10 N/20 mm.
摘要:
The present invention provides a dicing tape-integrated film for semiconductor back surface including: a dicing tape including a base material and a pressure-sensitive adhesive layer on the base material; and a film for flip chip type semiconductor back surface, which is provided on the pressure-sensitive adhesive layer, in which at least a part of the pressure-sensitive adhesive layer has been cured beforehand by irradiation with a radiation ray.
摘要:
The present invention relates to a film for flip chip type semiconductor back surface to be formed on the back surface of a semiconductor element flip chip-connected to an adherend, the film for flip chip type semiconductor back surface having a tensile storage elastic modulus at 25° C. after thermal curing within a range of from 10 GPa to 30 GPa, in which the tensile storage elastic modulus at 25° C. after thermal curing of the film for flip chip type semiconductor back surface falls within a range of from 4 times to 20 times the tensile storage elastic modulus at 25° C. before thermal curing thereof.
摘要:
The present invention relates to a thermally releasable sheet-integrated film for semiconductor back surface, which includes: a pressure-sensitive adhesive sheet including a base material layer and a pressure-sensitive adhesive layer, and a film for semiconductor back surface formed on the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet, in which the pressure-sensitive adhesive sheet is a thermally releasable pressure-sensitive adhesive sheet whose peel force from the film for semiconductor back surface decreases upon heating.
摘要:
The present invention relates to a film for flip chip type semiconductor back surface to be formed on a back surface of a semiconductor element flip chip-connected to an adherend, wherein said film has, on one surface thereof where said film does not face the back surface of the semiconductor element when said film is formed on the back surface of the semiconductor element, a surface roughness (Ra) within a range of from 50 nm to 3 μm before curing.