摘要:
A method for depositing a low dielectric constant film on a substrate is provided. The low dielectric constant film is deposited by a process comprising reacting one or more organosilicon compounds and a porogen and then post-treating the film to create pores in the film. The one or more organosilicon compounds include compounds that have the general structure Si—CX—Si or —Si—O—(CH2)n—O—Si—. Low dielectric constant films provided herein include films that include Si—CX—Si bonds both before and after the post-treatment of the films. The low dielectric constant films have good mechanical and adhesion properties, and a desirable dielectric constant.
摘要:
A method and apparatus for generating air gaps in a dielectric material of an interconnect structure. One embodiment provides a method for forming a semiconductor structure comprising depositing a first dielectric layer on a substrate, forming trenches in the first dielectric layer, filling the trenches with a conductive material, planarizing the conductive material to expose the first dielectric layer, depositing a dielectric barrier film on the conductive material and exposed first dielectric layer, depositing a hard mask layer over the dielectric barrier film, forming a pattern in the dielectric barrier film and the hard mask layer to expose selected regions of the substrate, oxidizing at least a portion of the first dielectric layer in the selected region of the substrate, removing oxidized portion of the first dielectric layer to form reversed trenches around the conductive material, and forming air gaps in the reversed trenches while depositing a second dielectric material in the reversed trenches.
摘要:
Embodiments in accordance with the present invention relate to multi-stage curing processes for chemical vapor deposited low K materials. In certain embodiments, a combination of electron beam irradiation and thermal exposure steps may be employed to control selective outgassing of porogens incorporated into the film, resulting in the formation of nanopores. In accordance with one specific embodiment, a low K layer resulting from reaction between a silicon-containing component and a non-silicon containing component featuring labile groups, may be cured by the initial application of thermal energy, followed by the application of radiation in the form of an electron beam.
摘要:
Methods are provided for depositing a silicon carbide layer having significantly reduced current leakage. The silicon carbide layer may be a barrier layer or part of a barrier bilayer that also includes a barrier layer. Methods for depositing oxygen-doped silicon carbide barrier layers are also provided. The silicon carbide layer may be deposited by reacting a gas mixture comprising an organosilicon compound, an aliphatic hydrocarbon comprising a carbon-carbon double bond or a carbon-carbon triple bond, and optionally, helium in a plasma. Alternatively, the silicon carbide layer may be deposited by reacting a gas mixture comprising hydrogen or argon and an organosilicon compound in a plasma.
摘要:
Disclosed is a structure and method for forming a structure including a SiCOH layer having increased mechanical strength. The structure includes a substrate having a layer of dielectric or conductive material, a layer of oxide on the layer of dielectric or conductive material, the oxide layer having essentially no carbon, a graded transition layer on the oxide layer, the graded transition layer having essentially no carbon at the interface with the oxide layer and gradually increasing carbon towards a porous SiCOH layer, and a porous SiCOH (pSiCOH) layer on the graded transition layer, the porous pSiCOH layer having an homogeneous composition throughout the layer. The method includes a process wherein in the graded transition layer, there are no peaks in the carbon concentration and no dips in the oxygen concentration.
摘要:
A method for forming a conductive feature in a low k dielectric layer comprising a layer of nanotubes and a low k material between the nanotubes is provided. The low k dielectric layer may be deposited on a seed layer as a blanket layer that is patterned such that a conductive feature may be formed in the low k dielectric layer. Alternatively, the low k dielectric layer may be selectively deposited on a patterned seed layer between a sacrificial layer of a substrate. The sacrificial layer may be removed and replaced with conductive material to form a conductive feature in the low k dielectric layer.
摘要:
A method and apparatus for treating a substrate is provided. A porous dielectric layer is formed on the substrate. In some embodiments, the dielectric may be capped by a dense dielectric layer. The dielectric layers are patterned, and a dense dielectric layer deposited conformally over the substrate. The dense conformal dielectric layer seals the pores of the porous dielectric layer against contact with species that may infiltrate the pores. The portion of the dense conformal pore-sealing dielectric layer covering the field region and bottom portions of the pattern openings is removed by directional selective etch.
摘要:
Embodiments of the present invention pertain to the formation of microelectronic structures. Low k dielectric materials need to exhibit a dielectric constant of less than about 2.6 for the next technology node of 32 nm. The present invention enables the formation of semiconductor devices which make use of such low k dielectric materials while providing an improved flexural and shear strength integrity of the microelectronic structure as a whole.
摘要:
Methods for the repair of damaged low k films are provided. Damage to the low k films occurs during processing of the film such as during etching, ashing, and planarization. The processing of the low k film causes water to store in the pores of the film and further causes hydrophilic compounds to form in the low k film structure. Repair processes incorporating ultraviolet (UV) radiation and carbon-containing compounds remove the water from the pores and further remove the hydrophilic compounds from the low k film structure.
摘要:
Methods for depositing a low dielectric constant layer on a substrate are provided. In one embodiment, the method includes introducing one or more organosilicon compounds into a chamber, wherein the one or more organosilicon compounds comprise a silicon atom and a porogen component bonded to the silicon atom, reacting the one or more organosilicon compounds in the presence of RF power to deposit a low dielectric constant layer on a substrate in the chamber, and post-treating the low dielectric constant layer to substantially remove the porogen component from the low dielectric constant layer. Optionally, an inert carrier gas, an oxidizing gas, or both may be introduced into the processing chamber with the one or more organosilicon compounds. The post-treatment process may be an ultraviolet radiation cure of the deposited material. The UV cure process may be used concurrently or serially with a thermal or e-beam curing process. The low dielectric constant layers have good mechanical properties and a desirable dielectric constant.