Abstract:
Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.
Abstract:
Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.
Abstract:
Showerheads are described including a first plurality of apertures configured to receive a first fluid that may be distributed to a processing region of a semiconductor substrate processing chamber. The first plurality of apertures may include a first set of apertures and a second set of apertures, and the first set of apertures may have an aperture diameter that is greater than the aperture diameter of the second set of apertures. The showerheads may also have a second plurality of apertures configured to receive a second fluid to be distributed to the processing region of the substrate processing chamber. The showerhead may be configured to maintain the first and second fluids fluidly isolated prior to their distribution to the processing region.
Abstract:
Embodiments of the present disclosure generally relate to a batch processing chamber that is adapted to simultaneously cure multiple substrates at one time. The batch processing chamber includes multiple processing sub-regions that are each independently temperature controlled. The batch processing chamber may include a first and a second sub-processing region that are each serviced by a substrate transport device external to the batch processing chamber. In addition, a slotted cover mounted on the loading opening of the batch curing chamber reduces the effect of ambient air entering the chamber during loading and unloading.
Abstract:
Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.
Abstract:
Semiconductor processing systems are described including a process chamber. The process chamber may include a lid assembly, grid electrode, conductive insert, and ground electrode. Each component may be coupled with one or more power supplies operable to produce a plasma within the process chamber. Each component may be electrically isolated through the positioning of a plurality of insulation members. The one or more power supplies may be electrically coupled with the process chamber with the use of switching mechanisms. The switches may be switchable to electrically couple the one or more power supplies to the components of the process chamber.
Abstract:
Semiconductor processing systems are described including a process chamber. The process chamber may include a lid assembly, grid electrode, conductive insert, and ground electrode. Each component may be coupled with one or more power supplies operable to produce a plasma within the process chamber. Each component may be electrically isolated through the positioning of a plurality of insulation members. The one or more power supplies may be electrically coupled with the process chamber with the use of switching mechanisms. The switches may be switchable to electrically couple the one or more power supplies to the components of the process chamber.
Abstract:
A method of etching exposed patterned heterogeneous structures is described and includes a remote plasma etch formed from a reactive precursor. The plasma power is pulsed rather than left on continuously. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents selectively remove one material faster than another. The etch selectivity results from the pulsing of the plasma power to the remote plasma region, which has been found to suppress the number of ionically-charged species that reach the substrate. The etch selectivity may also result from the presence of an ion suppression element positioned between a portion of the remote plasma and the substrate processing region.
Abstract:
Substrate support assemblies for a semiconductor processing apparatus are described. The assemblies may include a pedestal and a stem coupled with the pedestal. The pedestal may be configured to provide multiple regions having independently controlled temperatures. Each region may include a fluid channel to provide a substantially uniform temperature control within the region, by circulating a temperature controlled fluid that is received from and delivered to internal channels in the stem. The fluid channels may include multiple portions configured in a parallel-reverse flow arrangement. The pedestal may also include fluid purge channels that may be configured to provide thermal isolation between the regions of the pedestal.
Abstract:
Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.