Abstract:
A packaged semiconductor device having an integrated circuit (IC) die, a flexible tube, and a metal slug. During assembly, a first end of the tube is mounted on a surface of the IC die and a second end of the tube extends away from the die surface. The exposed portions of the surface of the IC die are encased in a molding compound, which also encases the perimeter of the tube. After molding, the tube may be filled with metal to improve conduction of heat away from the die top. If the tube is formed of a soft material like rubber then the tube will not damage the die top during attachment thereto.
Abstract:
A grid array assembly is formed from an electrical insulating material with embedded solder deposits. A first portion of each of the solder deposits is exposed on a first surface of the insulating material and a second portion of each of the solder deposits is exposed on an opposite surface of the insulating material. A semiconductor die is mounted to the first surface of the insulating material and electrodes of the die are connected to the solder deposits with bond wires. The die, bond wires, and the first surface of the insulating material then are covered with a protective encapsulating material.
Abstract:
A method of teaching an eyepoint for a wire bonding operation is provided. The method includes (1) selecting a group of shapes from a region of a semiconductor device for use as an eyepoint, and (2) teaching the eyepoint to a wire bonding machine using at least one of (a) a sample semiconductor device, or (b) predetermined data related to the semiconductor device. The teaching step includes defining locations of each of the shapes with respect to one another.
Abstract:
A lead frame having a coating of organic compounds on its lead fingers prevents tin and flux from contaminating the lead fingers after die attach. The coating is removed prior to wire bonding. The coating allows for reliable second bonds (bond between wires and lead fingers) to be formed, decreasing the likelihood of non-stick and improving wire peel strength.
Abstract:
A process for assembling a Chip-On-Lead packaged semiconductor device includes the steps of: mounting and sawing a wafer to provide individual semiconductor dies; performing a first molding operation on a lead frame; depositing epoxy on the lead frame via a screen printing process; attaching one of the singulated dies on the lead frame with the epoxy, where the die attach is done at room temperature; and curing the epoxy in an oven. Throughput improvements may be ascribed to not including a hot die attach process. An optional plasma cleaning step may be performed, which greatly improves wire bonding quality and a second molding quality. In addition, since a first molding operation is performed before the formation of epoxy to avoid the problem of the epoxy hanging in the air, the delamination risk between the epoxy and the die is avoided.
Abstract:
A lead frame having a coating of organic compounds on its lead fingers prevents tin and flux from contaminating the lead fingers after die attach. The coating is removed prior to wire bonding. The coating allows for reliable second bonds (bond between wires and lead fingers) to be formed, decreasing the likelihood of non-stick and improving wire peel strength.
Abstract:
An apparatus and method steer a light through a lens into a receiving port via a steering device. The steering device is located between the lens and a light source. A feedback mechanism adjusts the steering device to correct for aberration.
Abstract:
A semiconductor die package is assembled from a lead frame having lead fingers with a bonding end adjacent a die flag, and an elongate region extending away from the die flag. A semiconductor die is mounted on the die flag and electrodes of the semiconductor die are electrically connected to the bonding ends with bond wires. Each elongate region is bent into an external connector lead with mounting feet. The elongate region of each of the lead fingers protrudes from a housing formed from a mold compound. The mold compound extends from the housing to provide insulated support fingers molded to the external connector leads.
Abstract:
A process for assembling a Chip-On-Lead packaged semiconductor device includes the steps of: mounting and sawing a wafer to provide individual semiconductor dies; performing a first molding operation on a lead frame; depositing epoxy on the lead frame via a screen printing process; attaching one of the singulated dies on the lead frame with the epoxy, where the die attach is done at room temperature; and curing the epoxy in an oven. Throughput improvements may be ascribed to not including a hot die attach process. An optional plasma cleaning step may be performed, which greatly improves wire bonding quality and a second molding quality. In addition, since a first molding operation is performed before the formation of epoxy to avoid the problem of the epoxy hanging in the air, the delamination risk between the epoxy and the die is avoided.
Abstract:
A method of forming a wire bond in a semiconductor device includes forming a first bump of a first composition proximate to a probe mark on a bond pad. A second bump of the first composition is formed adjacent to the first bump such that the first and second bumps are formed away from the probe mark. A wire of a second composition that is harder than the first composition is attached on top of the first and second bumps to form an interconnection.